Tandem Prins/Friedel-Crafts Cyclization for Stereoselective Synthesis of Heterotricyclic Systems

B. V. Subba Reddy, ${ }^{*,+}$ Prashant Borkar, ${ }^{\dagger}$ J. S. Yadav, ${ }^{*,+}$ B. Sridhar, ${ }^{\neq}$and René Grée ${ }^{\S}$
${ }^{\dagger}$ Division of Organic Chemistry and ${ }^{\ddagger}$ Laboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India
${ }^{\text {s }}$ Université de Rennes 1, Laboratoire SCR, CNRS UMR 6226, Avenue du Général Leclerc, 35042 Rennes Cedex, France

(S) Supporting Information

Abstract

Homoallylic substrates such as (E)-6-arylhex-3enyl alcohols, N-tosylamides, and thiols undergo smooth crosscoupling with various aldehydes in the presence of $10 \mathrm{~mol} \%$ $\mathrm{Sc}(\mathrm{OTf})_{3}$ and $30 \mathrm{~mol} \% \mathrm{TsOH}$ to afford the trans-fused hexahydro- 1 H -benzo $[f]$ isochromenes, N-tosyloctahydrobenzo $[f]$ isoquinolines, and hexahydro- 1 H -benzo $[f]$ isothiochromenes, respectively. However, the cross-coupling of (Z)-olefins such as 6 -arylhex-3-enyl alcohols, N-tosylamides, and thiols with aldehydes affords the corresponding hexahydro-1H-benzo$[f]$ isochromenes, N-tosyloctahydrobenzo $[f]$ isoquinolines, and hexahydro-1H-benzo[f] isothiochromenes with complete cis selectivity via intramolecular Prins-, aza-Prins-, and thia-Prins/ Friedel-Crafts cyclizations, respectively. Though the Prins cyclization proceeds smoothly under the influence of $\mathrm{Sc}(\mathrm{OTf})_{3}$, high conversions and enhanced reaction rates are achieved using a mixture of $\mathrm{Sc}(\mathrm{OTf})_{3}$ and $\mathrm{TsOH}(1: 3)$.

■ INTRODUCTION

The coupling of an olefin with a carbonyl compound in the presence of an acid catalyst is known as the 'Prins reaction', which normally provides a mixture of 1,3-diols, 1,3-dioxanes, and allylic alcohols. ${ }^{1-4}$ In particular, the coupling of a homoallylic alcohol with a carbonyl compound in the presence of an acid catalyst is known as the 'Prins cyclization', which is a powerful synthetic tool for the stereoselective synthesis of tetrahydropyran scaffolds. ${ }^{5}$ On the other hand, aza-Prins cyclization of homoallylic amides with carbonyl compounds is one of the most elegant approaches for the synthesis of piperidine derivatives. ${ }^{5-8}$ In the same way, thia-Prins cyclization of homoallylic mercaptans with aldehydes under the influence of an acid catalyst provides the corresponding thia-tetrahydropyrans with high selectivity. ${ }^{9,10}$ Subsequently, tandem Prins cyclizations, such as Prins/Ritter and Prins/FriedelCrafts, have also been reported to produce 4 -amido- and 4-aryltetrahydropyran derivatives, respectively. ${ }^{5,11-18}$ Recently, a tandem ene/Prins cyclization has been reported to furnish annulated tetrahydropyran scaffolds. ${ }^{19}$ Therefore, the Prins cyclization has emerged as a powerful method for stereoselective synthesis of a wide range of heterocycles such as tetrahydropyrans, thiapyrans, and piperidine scaffolds. In spite of its potential application in natural products synthesis, ${ }^{20}$ the intramolecular versions of Prins and aza-Prins cyclizations are still unexplored. ${ }^{5,14,21-24}$ To the best of our knowledge, until now, there have been no reports on the intramolecular versions of aza- and thia-Prins/FriedelCrafts cyclizations.

Figure 1. Examples of bioactive octahydrobenzo $[f]$ isoquinoline analogues.
The saturated form of the hexahydro- $1 H$-benzo $[f]$ isochromene skeleton is typically found in some biologically active natural products such as alpindenosides C and D and curcumanggoside. ${ }^{25,26}$ Alpindenosides C and D are a novel class of labdane diterpene glycosides isolated from the stems of Alpinia densespicata which exhibit moderate NO inhibitory activities, whereas they are noncytotoxic at $20 \mu \mathrm{M}$ against several human tumor cell lines. Curcumanggoside is also a labdane diterpene glycoside isolated from the rhizomes of Curcuma mangga. Some of the trans- and cis-fused octahydrobenzo[f]isoquinoline analogues (Figure 1) show a high affinity toward σ receptors with regard to psychotomimetic effects ${ }^{27-29}$ or as potential calcium channel blockers. ${ }^{30}$ Thiapyrans are rarely available in Nature. The thiapyran motif occupies a key role in a number of pharmaceutical agents such as cephalosporins and dithiathromboxane $\mathrm{A}_{2} .{ }^{31,32}$ Furthermore, thiacyclohexane derivatives can be transformed into a variety of

[^0]Table 1. Catalyst Optimization for Intramolecular Prins/Friedel-Crafts Cyclization of (E)-6-Phenylhex-3-en-1-ol with 4-Bromobenzaldehyde ${ }^{a}$

	 $E(1)$	 2	$\xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2} \text {, r.t. }]{\text { Catalyst }}$			
entry	$\mathrm{Sc}(\mathrm{OTf})_{3}(\mathrm{~mol} \%)$		$\mathrm{TsOH}(\mathrm{mol} \%)$	$\mathrm{TfOH}(\mathrm{mol} \%)$	time (h)	yield (\%) ${ }^{\text {b }}$
a	10				30	75
b	30				24	80
c			10		36	49
d			30		30	57
e	30		10		16	84
f	10		10		18	80
g	10		20		11	85
h	10		30		7	92
i				30	24	65
j	10			30	8	86

${ }^{a}$ Reaction was performed at 0.5 mmol scale with respect to olefin in dichloromethane at room temperature. ${ }^{b}$ Combined yield of trans- and cis-fused product (diastereomeric ratio $=9: 1$) after column chromatography.

Figure 2. Characteristic NOEs and chemical structure of $\left(4 S^{*}, 4 \mathrm{a} S^{*}, 10 \mathrm{~b} R^{*}\right)-4$ (4-bromophenyl)-2,4,4a,5,6,10b-hexahydro-1H-benzo[f] isochromene (3a).
structures through simple reactions such as hydrogenolysis, oxidation, and olefination. ${ }^{33,34}$

\square RESULTS AND DISCUSSION

In a continuation of our research program on Prins-type cyclizations and its application to the total synthesis of natural products, ${ }^{35-37}$ we herein report a versatile method for stereoselective synthesis of heterotricycles, namely, hexahydro- 1 H benzo[f]isochromene, octahydrobenzo[f]isoquinoline, and hexahydro- $1 H$-benzo $[f]$ isothiochromene, via intramolecular Prins-, aza-Prins-, and thia-Prins/Friedel-Crafts cyclizations, respectively.

As a model reaction, we first attempted the cross-coupling of 4-bromobenzaldehyde (2) with (E)-6-phenylhex-3-en-1-ol (1) in the presence of $10 \mathrm{~mol} \% \mathrm{Sc}(\mathrm{OTf})_{3}$ and $30 \mathrm{~mol} \% \mathrm{TsOH}$ in dichloromethane. The reaction proceeded smoothly at room temperature to furnish the corresponding product 3a in 92% yield with a high trans selectivity ($90: 10$, Table 1 , entry \mathbf{h}). The ratio of trans/cis isomers was determined by ${ }^{1} \mathrm{H}$ NMR spectra of a crude product. The two diastereomers could easily be separated by silica gel column chromatography. The combination of $\mathrm{Sc}(\mathrm{OTf})_{3}$ and $\mathrm{TsOH}(1: 3)$ works more effective than either $\mathrm{Sc}(\mathrm{OTf})_{3}$ or TsOH alone in terms of reaction time and yield (Table 1). The high catalytic activity of the above reagent system may be
explained by means of a cooperative catalysis ${ }^{38}$ between $\mathrm{Sc}(\mathrm{OTf})_{3}$ and an organic cocatalyst (TsOH) or by in situ formation of $\mathrm{Sc}(\mathrm{OTs})_{3}$. However, no $\mathrm{Sc}(\mathrm{OTs})_{3}$ was formed in situ from $\mathrm{Sc}(\mathrm{OTf})_{3}$ and TsOH , which was later confirmed by running a simple ${ }^{1} \mathrm{H}$ NMR experiment of the catalyst. Indeed, no significant change in chemical shift (δ) values of the p-tolyl group of TsOH was observed in the ${ }^{1} \mathrm{H}$ NMR spectrum. Formation of $\mathrm{Sc}(\mathrm{OTs})_{3}$ may be ruled out further as there was no characteristic m / z peak for $\mathrm{Sc}(\mathrm{OTs})_{3}$ in the mass spetrum. Moreover, it was supported by performing the reaction in the presence of $\mathrm{Sc}(\mathrm{OTf})_{3}$ and TfOH wherein similar enhanced catalytic activity was observed (entry \mathbf{j}, Table 1).

The structure and stereochemistry of $\left(4 S^{*}, 4 a S^{*}, 10 \mathrm{~b} R^{*}\right)-4-(4-$ bromophenyl)-2,4,4a,5,6,10b-hexahydro-1 H-benzo $f f$] isochromene 3a was established by NOE experiments. The proton 4-H shows a large coupling of 9.8 Hz with $4 \mathrm{a}-\mathrm{H}$ indicating the axial orientation of 4-H. Also, 4a-H shows a large coupling $(12.1 \mathrm{~Hz})$ with $10 \mathrm{~b}-\mathrm{H}$, which further shows a large coupling with one of the $1-\mathrm{H}$ protons, indicating that $4 \mathrm{a}-\mathrm{H}$ and $10 \mathrm{~b}-\mathrm{H}$ are in axial positions. In addition to the couplings, the presence of NOE cross-peaks between $4-\mathrm{H}, 10 \mathrm{~b}-\mathrm{H}$, and $2-\mathrm{H}$ as well as cross-peaks between 4aH and 1-H confirmed that the fusion between the two rings is trans (Figure 2). The double-edged arrows show characteristic NOE correlations. Furthermore, the structure of 3a was confirmed by X-ray crystallography. ${ }^{39}$

However, the cross-coupling of (Z)-6-phenylhex-3-en-1-ol with 4-bromobenzaldehyde in the presence of $10 \mathrm{~mol} \% \mathrm{Sc}$ (OTf) ${ }_{3}$ and $30 \mathrm{~mol} \% \mathrm{TsOH}$ in dichloromethane at room temperature gave the product $\mathbf{3 b}$ in 88% yield with complete cis selectivity (Scheme 1 , Table 2 , entry \mathbf{b}). The above results provided a gateway to extend this process to a variety of other interesting substrates like (E)- and (Z)-6-(3-methoxyphenyl)hex3 -en-1-ol and (E)- and (Z)-6-p-tolylhex-3-en-1-ol. The scope of the reaction is illustrated with respect to various aldehydes like

Scheme 1. Reaction of (Z)-6-Phenylhex-3-en-1-ol with 4-Bromobenzaldehyde

cyclohexanecarboxaldehyde, thiophene-2-carbaldehyde, 3-methylbutanal, 4-nitrobenzaldehyde, and cinnamaldehyde, and the results are presented in Table 2 (entries $\mathbf{c}-\mathbf{h}, \mathbf{k}-\mathbf{n}$). In all cases, the corresponding hexahydro- $1 H$-benzo $[f]$ isochromenes (entries \mathbf{g}, $\mathbf{h}, \mathbf{k}-\mathbf{n}$, Table 2) were obtained in good yields with high selectivity. The geometry of the olefin controls the stereoselectivity of the reaction. It is known that cis olefin gives cis-fused product exclusively, whereas trans olefin provides trans-fused product predominantly. This method works well not only with aldehydes but also with ketones. For instance, cyclohexanone affords the spiropyrans under identical conditions (entries \mathbf{i} and \mathbf{j}). In the case of the metasubstituted aryl group, for example, 6-(3-methoxyphenyl)hex-3-en1 -ol, the corresponding product was obtained as a $3: 1$ mixture of para/ortho isomers (entries $\mathbf{g}-\mathbf{j}$, Table 2). The ratio of para/ortho isomers was determined by ${ }^{1} \mathrm{H}$ NMR spectra of the crude product. The two regioisomers could easily be separated by silica gel column chromatography. In the case of entry a, formation of minor cis-fused product (10%) may be due to some nonconcertedness during the process of cyclization with 4-bromobenzaldehyde in which a minor amount of trapping of the secondary carbenium ion may occur from the same face as the dihydrostyryl substituent.

Next, we examined the aza-Prins/Friedel-Crafts cyclization of 4-methyl- N-(6-arylhex-3-enyl)benzenesulfonamide (4) with aldehydes. Accordingly, 3-methylbutanal was treated with (E)-4-methyl- N -(6-phenylhex-3-enyl)benzenesulfonamide (4) in the presence of $10 \mathrm{~mol} \% \mathrm{Sc}(\mathrm{OTf})_{3}$ in 1,2-dichloroethane. To our surprize, aza-Prins cyclization proceeded at $80^{\circ} \mathrm{C}$ to afford the corresponding trans-fused N -tosyl-octahydrobenzo $[f]$ isoquinoline $\mathbf{5 e}$ in 78% yield as a sole product (Table 3, entry e). Likewise, coupling of (Z)-4-methyl- N-(6 -phenylhex-3-enyl)benzenesulfonamide with 3 -methylbutanal gave the cis-fused N-tosyloctahydrobenzo[f]isoquinoline $\mathbf{5 f}$ in 80% yield exclusively (Table 3, entry f). The structure and stereochemistry of ($4 S^{*}, 4 \mathrm{a} R^{*}, 10 \mathrm{~b} R^{*}$)-4-isobutyl-3-tosyl-1,2,3,4,4a,5,6,10b-octahydrobenzo[$f]$ isoquinoline $5 \mathbf{f}$ was established by NOE experiments. The coupling between $4-\mathrm{H}$ and $4 \mathrm{a}-\mathrm{H}$ protons is 1 Hz . This indicates that $4-\mathrm{H}$ and $4 \mathrm{a}-\mathrm{H}$ are in equatorial positions. This is further confirmed by a small coupling between $4 \mathrm{a}-\mathrm{H}$ and $10 \mathrm{~b}-\mathrm{H}(4.9 \mathrm{~Hz})$ and absence of NOE cross-peaks between 4-H/10b-H, 4-H/2-H, $4 \mathrm{a}-\mathrm{H} / 1-\mathrm{H}$. The proton $10 \mathrm{~b}-\mathrm{H}$ is in the axial position since it shows a large coupling $(11.7 \mathrm{~Hz})$ with one of the $1-\mathrm{H}$ protons and NOE with one of the $2-\mathrm{H}$ protons. From these observations, it is confirmed that the cis fusion takes place between the two rings (Figure 3). The coupling values and NOEs are consistent with the structure as shown in Figure 3. The double-edged arrows show characteristic NOE correlations. Furthermore, the structure of 5f was confirmed by X-ray crystallography. ${ }^{39}$

The scope of the reaction is illustrated with regard to substrates such as (E) - and (Z)-4-methyl-N-(6-(3-methoxyphenyl)hex-3-enyl)benzenesulfonamide and (E) - and (Z)-4-methyl- N-(6 -p-tolylhex-3-enyl)benzenesulfonamide and various aldehydes, and the results are summarized in Table 3. Notably, paraformaldehyde ${ }^{40}$ also

Figure 3. Coupling constants and characteristic NOEs of $\left(4 S^{*}, 4 \mathrm{a} R^{*}, 10 \mathrm{~b} R^{*}\right)$ -4-isobutyl-3-tosyl-1,2,3,4,4a,5,6,10b-octahydrobenzo[f]isoquinoline ($\mathbf{5 f}$).

Figure 4. Characteristic NOEs and chemical structure of $\left(4 S^{*}, 4 \mathrm{a} S^{*}\right.$, $10 \mathrm{~b} R^{*}$)-4-(2-fluorophenyl)-2,4,4a,5,6,10b-hexahydro-1 H -benzo[f]isothiochromene (7a).
participated well in this cyclization (entries \mathbf{g} and \mathbf{h}, Table 3). As shown in Table 3, aromatic aldehydes gave slightly lower yields than aliphatic counterparts (entries $\mathbf{c}, \mathbf{d}, \mathbf{m}$ and \mathbf{n}). In the case of 4-methyl-N-(6-(3-methoxyphenyl)hex-3-enyl)benzenesulfonamide, products $5 \mathbf{i}-1$ were obtained as a $2: 1$ mixture of para/orthosubstituted products (entries $\mathbf{i}-1$, Table 3). The two regioisomers could easily be separated by silica gel column chromatography.

Encouraged by the results obtained with aryl-tethered homoallylic alcohols (1) and tosylamides (4), we turned our attention to extend this process for the thia-Prins/Friedel-Crafts cyclization. Accordingly, 2-fluorobenzaldehyde was treated with (E)-6-phenylhex-3-ene-1-thiol (6) in the presence of $10 \mathrm{~mol} \% \mathrm{Sc}(\mathrm{OTf})_{3}$ in dichloromethane. Interestingly, thia-Prins cyclization proceeded smoothly at room temperature to afford the respective trans-fused hexahydro- 1 H -benzo $[f]$ isothiochromene 7 a as a sole product in 86% yield (Table 4 , entry a). The structure and stereochemistry of $\left(4 S^{*}, 4 \mathrm{a} S^{*}, 10 \mathrm{~b} R^{*}\right)$-4-(2-fluorophenyl)-2,4,4a,5,6,10b-hexahydro1 H -benzo $[f]$ isothiochromene 7 a was characterized by NOE experiments. The proton $4-\mathrm{H}$ shows a large coupling of 10.6 Hz with $4 \mathrm{a}-\mathrm{H}$, indicating axial orientation of $4-\mathrm{H}$. Also, $4 \mathrm{a}-\mathrm{H}$ shows a large coupling ($J=10.6 \mathrm{~Hz}$) with $10 \mathrm{~b}-\mathrm{H}$, which further shows a large coupling with one of the 1-H protons, indicating that $4 \mathrm{a}-\mathrm{H}$ and $10 \mathrm{~b}-\mathrm{H}$ are in axial positions. It is further confirmed by the presence of NOE cross-peaks between $4-\mathrm{H}, 10 \mathrm{~b}-\mathrm{H}$, and $2-\mathrm{H}$ as well as cross-peaks between $4 \mathrm{a}-\mathrm{H}$ and $1-\mathrm{H}$. From the above observations, it is confirmed that the fusion between the two rings is trans as shown in Figure 4. The thiapyran ring in the molecule adopts the chair form, which is in agreement with the observed couplings and NOE cross-peaks. The double-edged arrows show characteristic NOE correlations. Furthermore, the structure of 7a was confirmed by X-ray crystallography. ${ }^{39}$

Table 2. Synthesis of Hexahydro-1H-benzo[$f]$ isochromene Scaffolds via Intramolecular Prins/Friedel-Crafts Cyclizations ${ }^{a}$

(2)

- Pr
$\begin{array}{ll}\text { Product (3) } & \text { Time (h) } \quad \text { Yield (\%) }\end{array}$
a

$7 \begin{array}{cc} & 92 \\ & \text { trans:cis } \\ \text { ratio }=9: 1\end{array}$
b

$7 \quad 88$

$5 \quad 86$
c

$5 \quad 84$
d

e

$6 \quad 86$

$6 \quad 80$
f

$5 \quad 60^{d}$

$10 \quad 56^{\text {d }}$

$5 \quad 58^{\text {d }}$
$8^{\text {d }}$
h

$10 \quad 56^{\text {d }}$

$7 \quad 90$
k

I

$7 \quad 85$
m

6
84
n

6
86
${ }^{a}$ Reaction was performed with 0.5 mmol of olefin, 0.6 mmol of aldehyde, and $10 \mathrm{~mol} \% \mathrm{Sc}(\mathrm{OTf})_{3}+30 \mathrm{~mol} \% \mathrm{TsOH}$ in dichloromethane at room temperature. ${ }^{b}$ All products were characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, IR, and mass spectroscopy. ${ }^{c}$ Yield refers to pure product after column chromatography. ${ }^{d}$ Yield of major regioisomer (regioisomeric ratio $=3: 1$).

Table 3. $\mathrm{Sc}(\mathrm{OTf})_{3}$-Catalyzed Synthesis of N-Tosyl-octahydrobenzo $[f]$ isoquinolines ${ }^{a}$

Entry	Homoallylic amine (4)	Aldehyde (2)	Product (5) ${ }^{\text {b }}$	Time (h)	Yield (\%) ${ }^{\text {c }}$
a				7	76
b				7	74
c				14	65
d				14	68
e				7	78
f				7	80
g		$\left(\mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n}}$		4	82
h		$\left(\mathrm{CH}_{2} \mathrm{O}\right)_{n}$		4	80
i		\sim сно	 major	6	$50^{\text {d }}$
j		\sim сно	 major	6	$48^{\text {d }}$
k				7	$54^{\text {d }}$
1				7	$52^{\text {d }}$
m				14	65
n				14	66
-				8	74
p				8	75

${ }^{a}$ Reaction was performed with 0.5 mmol of olefin, 0.6 mmol of aldehyde, and $10 \mathrm{~mol} \% \mathrm{Sc}(\mathrm{OTf}) 3$ in 1,2 -dichloroethane at $80^{\circ} \mathrm{C} .{ }^{b, c, d}$ Same as in Table 2.

Table 4. Synthesis of Hexahydro-1H-benzo[f]isothiochromene Scaffolds via Intramolecular Thia-Prins/Friedel-Crafts Cyclization ${ }^{a}$

| Entry | Homoallylic thiol (6) | Aldehyde (2) | Product (7) ${ }^{\text {b }}$ |
| :--- | :--- | :--- | :--- |\quad Time (h) Yield (\%) ${ }^{\text {c }}$

a

6
86
b

6
84
c

5
80
d

5
82
e

6
88

6
85
f

g

6
59^{d}
h

$6 \quad 60^{\text {d }}$

8
59^{d}
i

8
$58^{\text {d }}$

5
92
k

5
90
${ }^{a}$ Reaction was performed with 0.5 mmol of olefin, 0.6 mmol of aldehyde, and $10 \mathrm{~mol} \% \mathrm{Sc}(\mathrm{OTf})_{3}$ in dichloromethane at room temperature.
${ }^{b}$ All products were characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, IR, and mass spectroscopy. ${ }^{c}$ Yield refers to pure product after column chromatography.
${ }^{d}$ Yield of major regioisomer (regioisomeric ratio $=3: 1$) .

Scheme 2. Plausible Reaction Pathway for Prins/Friedel-Crafts Cyclization

As expected, coupling of (Z)-6-phenylhex-3-ene-1-thiol with 2-fluorobenzaldehyde under similar conditions afforded the corresponding cis-fused hexahydro- $1 H$-benzo $[f]$ isothiochromene $7 \mathbf{b}$ exclusively in 84% yield (Table 4 , entry b). The scope of the reaction with other aldehydes like thiophene-2-carbaldehyde and cinnamaldehyde is illustrated in Table 4 (entries c-f). Similarly, other aryl-tethered homoallylic mercaptans such as (E) - and (Z) 6 -(3-methoxyphenyl)hex-3-ene-1-thiol and (E)- and (Z)-6-p-tolylhex-3-ene-1-thiol also underwent smooth intramolecular thia-Prins/Friedel-Crafts cyclization with different aldehydes such as naphthalene-2-carbaldehyde, n-butyraldehyde, and 2-nitrobenzaldehyde to afford the respective trans/cis-fused hexahy-dro- $1 H$-benzo $[f]$ isothiochromenes 7 (entries $\mathbf{g}-\mathbf{l}$, Table 4). In the case of 6-(3-methoxyphenyl)hex-3-ene-1-thiol, the product was obtained as a $3: 1$ mixture (determined by ${ }^{1}$ H NMR spectra of the crude product) of para/ortho-substituted products (entries $\mathbf{g}-\mathbf{j}$, Table 4). These two regioisomers could easily be separated by silica gel column chromatography.

Besides aldehydes, we found that epoxides are also equally effective in Prins- and aza-Prins/Friedel-Crafts cyclizations in the presence of an acid catalyst. It is well known that epoxides undergo a facile rearrangement to aldehydes or ketones in the presence of an acid catalyst. ${ }^{23,41}$ In the present study, styrene oxide underwent smooth rearrangement when exposed to $10 \mathrm{~mol} \%$ $\mathrm{Sc}(\mathrm{OTf})_{3}$ to give the phenylacetaldehyde, which subsequently reacted with (Z)-4-methyl- N -(6-phenylhex-3-enyl)benzenesulfonamide (4) at ambient temperature to furnish the cis-fused N-tosyloctahydrobenzo[$f]$ isoquinoline $\mathbf{8 d}$ as a sole product in 70% yield (entry g, Table 5). However, the product $\mathbf{8 d}$ was obtained in 78% yield when the reaction was performed with phenylacetaldehyde directly at $80^{\circ} \mathrm{C}$ (entry h, Table 5). The above experiments proved that phenylacetaldehyde is a superior substrate to styrene oxide. Other homoallylic substrates such as $(E)-4$-methyl- N -(6-p-tolylhex-3-enyl)benzenesulfonamide, (Z)-6-phenylhex-3-en-1-ol, and (E)-6-(3-methoxyphenyl)hex-3-en-1-ol were treated with both styrene oxide and phenylacetaldehyde, and the results are summarized in Table 5.

Other Brønsted acids such as trifluoromethanesulfonic acid (TfOH) and camphorsulfonic acid (CSA) as well as Lewis acids such as $\operatorname{In}(\mathrm{OTf})_{3}, \mathrm{La}(\mathrm{OTf})_{3}$, and InBr_{3} were screened for this conversion. Of these, the combination of $\mathrm{Sc}(\mathrm{OTf})_{3}$ and TsOH (1:3) was found to give the best results in Prins/Friedel-Crafts cyclization (Table 1), whereas $\mathrm{Sc}(\mathrm{OTf})_{3}$ gave excellent results in aza-Prins and thia-Prins/Friedel-Crafts cyclizations (Table 6). Next, we examined the effect of various solvents such as
dichloromethane, 1,2-dichloroethane, toluene, and tetrahydrofuran. Among them, dichloromethane and 1,2-dichloroethane gave the best results.

Mechanistically, the reaction is expected to proceed via formation of oxocarbenium ion from hemiacetal which is formed in situ from an aldehyde and a homoallylic alcohol, likely after activation through $\mathrm{Sc}(\mathrm{III})$. This is followed by attack of an internal olefin, resulting in formation of carbocation, which is simultaneously trapped by an aryl group, leading to formation of hexahydro- 1 H benzo[f]isochromene as depicted in Scheme 2.

■ CONCLUSION

In summary, we demonstrated a versatile approach for stereoselective synthesis of a novel class of heterotricycles in a singlestep operation. This is the first report on intramolecular aza- and thia-Prins/Friedel-Crafts cyclizations. Our approach is highly stereoselective to provide cis- and trans-fused tricyclic systems. This method provides direct access to the synthesis of biologically active octahydrobenzo[f]isoquinolines which are reported as potent σ receptors with regard to psychotomimetic effects. These new products are under biological screening, in particular for CNS activity. We found that the combination of $\mathrm{Sc}(\mathrm{OTf})_{3}$ and TsOH (cocatalysis) works more effectively than either $\mathrm{Sc}(\mathrm{OTf})_{3}$ or TsOH alone in terms of reaction time and yields.

■ EXPERIMENTAL SECTION

General. All solvents were dried according to standard literature procedures. Reactions were performed in oven-dried round-bottom flask, the flasks were fitted with rubber septa, and reactions were conducted under a nitrogen atmosphere. Glass syringes were used to transfer solvent. Crude products were purified by column chromatography on silica gel of $60-120$ or $100-200$ mesh. Thin layer chromatography plates were visualized by exposure to ultraviolet light, exposure to iodine vapors, and/or exposure to methanolic acidic solution of p-anisaldehyde (anis) followed by heating ($<1 \mathrm{~min}$) on a hot plate ($\sim 250^{\circ} \mathrm{C}$). Organic solutions were concentrated on a rotary evaporator at $35-40^{\circ} \mathrm{C}$. IR spectra were recorded on FT-IR spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (protondecoupled) spectra were recorded in CDCl_{3} solvent on a $200,300,400$, or 500 MHz NMR spectrometer. Chemical shifts (δ) were reported in parts per million (ppm) with respect to TMS as an internal standard. Coupling constants (J) are quoted in Hertz (Hz). Mass spectra were recorded on a mass spectrometer by the electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) technique.

Table 5. Comparative Study of Prins- and Aza-Prins/Friedel-Crafts Cyclizations with Phenyl Acetaldehyde and Styrene Oxide ${ }^{a}$
Entry
${ }^{a}$ Reaction was performed with 0.5 mmol of olefin, 0.75 mmol of styrene oxide, or 0.6 mmol of phenylacetaldehyde and $10 \mathrm{~mol} \% \mathrm{Sc}(\mathrm{OTf}) 3$ at room temperature. ${ }^{b}$ Isolated yield after column chromatography. ${ }^{c}$ Reaction afforded a 3:1 ratio of para/ortho-substituted products; yield of major isomer. ${ }^{d}$ Reaction was performed at $80^{\circ} \mathrm{C}$.

Table 6. Catalyst Screening for Intramolecular Aza-Prinsand Thia-Prins/Friedel-Crafts Cyclizations ${ }^{a}$

		$\mathrm{R}-\mathrm{CHO}$	Catalyst $\mathrm{ClCH}_{2} \mathrm{CH}$ or CH	$\begin{aligned} & 10 \mathrm{~mol} \%) \\ & \mathrm{Cl}, 80^{\circ} \mathrm{C} \\ & \mathrm{Cl}_{2}, \text { r.t. } \end{aligned}$		
entry	X	R	catalyst	product	time (h)	yield (\%) ${ }^{\text {b }}$
a	NTs	cyclohexyl	$\mathrm{Sc}(\mathrm{OTf})_{3}$	5a	7	76
b			$\mathrm{In}(\mathrm{OTf})_{3}$		7	70
c			$\mathrm{La}(\mathrm{OTf})_{3}$		12	50
d			TsOH		12	55
e	S	o-F-phenyl	InBr_{3}	7a	12	58
f			$\mathrm{In}(\mathrm{OTf})_{3}$		6	80
g			$\mathrm{Sc}(\mathrm{OTf})_{3}$		6	86
h			$\mathrm{La}(\mathrm{OTf})_{3}$		6	75

${ }^{a}$ Reaction was performed with 0.5 mmol of olefin, 0.6 mmol of aldehyde, and $10 \mathrm{~mol} \%$ catalyst. ${ }^{b}$ Yield refers to pure product after column chromatography.

Typical Procedure for Intramolecular Prins/FriedelCrafts Cyclization. To a stirred solution of 6-arylhex-3-en-1-ol
($1 ; 0.50 \mathrm{mmol}$) and aldehyde $(0.60 \mathrm{mmol})$ in anhydrous dichloromethane $(5 \mathrm{~mL})$ was added $\mathrm{Sc}(\mathrm{OTf})_{3}(10 \mathrm{~mol} \%)$ and $p-\mathrm{TsOH}(30 \mathrm{~mol}$ $\%$), and this was stirred at room temperature under a nitrogen atmosphere for the specified time (Table 2). After completion of the reaction as indicated by TLC, the mixture was quenched with saturated NaHCO_{3} solution $(0.5 \mathrm{~mL})$ and extracted with dichloromethane $(2 \times 5 \mathrm{~mL})$. The organic phases were combined, washed with brine ($3 \times 2 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resulting crude product was purified by silica gel column chromatography ($100-200$ mesh) using ethyl acetate/hexane gradients to afford pure product 3 (Table 2).
($4 S^{*}, 4 \mathrm{a} S^{*}, 10 \mathrm{~b} R^{*}$)-4-(4-Bromophenyl)-2,4,4a,5,6,10b-hex-ahydro-1H-benzo[f]isochromene (3a; Table 2; Entry a). The reaction afforded a $90: 10$ mixture of trans:cis-fused products. The two isomers could be easily separated by silica gel column chromatography. Crystals for XRD were obtained by dissolving the compound in 3 mL of ethanol, followed by slow evaporation of solvent over 4 days. Yield, 158 $\mathrm{mg}, 92 \%$; white solid, $\mathrm{mp} 98-100{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47,7.44\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}\right), 7.21,7.18\left(\mathrm{BB}^{\prime}, 2 \mathrm{H}\right), 7.20-7.16(\mathrm{~m}, 1 \mathrm{H})$, $7.15-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.96(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{ddd}, J=11.3,4.5$, and 1.5 Hz , $1 \mathrm{H}), 4.02(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dt}, J=12.1$ and $2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.83-2.61(\mathrm{~m}, 3 \mathrm{H}), 2.41-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.64-$ $1.50(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.29(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.8$, 138.7, 136.3, 131.4, 129.1, 128.9, 126.0, 125.8, 124.7, 121.6, 84.8, 68.5,
44.7, 41.4, 30.7, 28.6, 24.5; IR (KBr) $v_{\max }$ 2925, 2846, 1485, 1069, 820, $746 \mathrm{~cm}^{-1}$; ESI-MS $\mathrm{m} / \mathrm{z} 343(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrO}, 343.0692(\mathrm{M}+\mathrm{H})^{+}$; found, 343.0706.
(4S*,4aR*,10bR*)-4-(4-Bromophenyl)-2,4,4a,5,6,10b-hex-ahydro-1H-benzo[f]isochromene (3b; Table 2; Entry b). Yield, $151 \mathrm{mg}, 88 \%$; white solid, mp $117-119{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.45,7.43\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}\right), 7.17,7.15\left(\mathrm{BB}^{\prime}, 2 \mathrm{H}\right), 7.10-6.95(\mathrm{~m}$, $4 \mathrm{H}), 4.62($ broad s, 1 H$), 4.22-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.10$ $(\mathrm{td}, J=11.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.55(\mathrm{~m}, 1 \mathrm{H})$, $2.11-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 1 \mathrm{H})$, $1.71-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.19(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 140.6,140.4,135.9,131.1,129.0,128.6,127.3,126.0,125.7,120.4$, 81.0, 68.8, 39.5, 39.4, 31.3, 29.1, 16.6; IR (KBr) $v_{\max } 2942,2843,1487$, 1093, $744 \mathrm{~cm}^{-1}$; ESI-MS $m / z 343(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrO}, 343.0692(\mathrm{M}+\mathrm{H})^{+}$; found, 343.0685 .
($4 R^{*}, 4 \mathrm{a} S^{*}, 10 \mathrm{~b} R^{*}$)-4-Cyclohexyl-2,4,4a,5,6,10b-hexahydro-1H-benzo[f]isochromene (3c; Table 2; Entry c). Yield, 116 mg , 86%; white solid, mp $88-90{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20-6.96(\mathrm{~m}, 4 \mathrm{H}), 4.15(\mathrm{ddd}, J=11.3,4.5$, and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55$ $(\mathrm{dt}, J=12.1$ and $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.76(\mathrm{~m}, 2 \mathrm{H})$, 2.57-2.44 (m, 1H), 2.27-2.16 (m, 1H), 1.96-1.40 (m, 10H), 1.39$1.07(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.7,136.3,128.7,125.9$, 125.7, 124.7, 85.9, 68.3, 41.4, 39.9, 38.7, 31.0, 30.8, 28.9, 27.1, 26.8, 26.7, 25.1, 24.0; IR (KBr) $v_{\text {max }}$ 2925, 2848, 1453, 1089, $741 \mathrm{~cm}^{-1}$; ESI-MS $m / z 271(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}, 271.2056$ $(\mathrm{M}+\mathrm{H})^{+}$; found, 271.2060 .
$\left(4 R^{*}, 4 \mathrm{a} R^{*}, 10 \mathrm{~b} R^{*}\right)$-4-Cyclohexyl-2,4,4a,5,6,10b-hexahydro1 H -benzo[f]isochromene (3d; Table 2; Entry d). Yield, 114 mg , 84%; white solid, mp $98-100{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.08-6.94(\mathrm{~m}, 4 \mathrm{H}), 4.06-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.08-$ $2.99(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.69(\mathrm{~m}, 3 \mathrm{H}), 2.21-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.44$ $(\mathrm{m}, 10 \mathrm{H}), 1.36-1.07(\mathrm{~m}, 3 \mathrm{H}), 0.98-0.76(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 141.3,136.1,129.0,128.6,125.8,125.6,84.7,68.8,39.6,38.8$, $34.6,32.0,30.7,29.3,27.9,26.6,26.0,25.8,16.8$; IR (KBr) $v_{\max } 2925$, 2840, 1443, 1093, $745 \mathrm{~cm}^{-1}$; ESI-MS m/z $271(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}, 271.2056(\mathrm{M}+\mathrm{H})^{+}$; found, 271.2046.
($4 S^{*}, 4 \mathrm{a} S^{*}, 10 \mathrm{~b} R^{*}$)-4-(Thiophen-2-yl)-2,4,4a,5,6,10b-hexa-hydro-1H-benzo[f]isochromene (3 e ; Table 2; Entry e). Yield, $116 \mathrm{mg}, 86 \%$; solid, mp $64-66{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.19-6.93(\mathrm{~m}, 5 \mathrm{H}), 4.42(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.36-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{dt}, J=12.1$ and $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.65$ $(\mathrm{m}, 3 \mathrm{H}), 2.40-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.49-1.29(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.9,138.7,136.5,128.9,126.2,126.0$, $125.8,125.6,125.1,124.7,80.5,68.6,45.8,41.5,30.5,28.7,24.8$; IR $(\mathrm{KBr}) \nu_{\text {max }}$ 2919, 2844, 1091, 743, $702 \mathrm{~cm}^{-1}$; MS (APCI) m/z 271 $(\mathrm{M}+\mathrm{H})^{+}$; HRMS $(A P C I)$ calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{OS}, 271.1157(\mathrm{M}+\mathrm{H})^{+}$; found, 271.1150.
$\left(4 S^{*}, 4 \mathrm{a} R^{*}, 10 \mathrm{~b} R^{*}\right)$-4-(Thiophen-2-yl)-2,4,4a,5,6,10b-hexa-hydro-1H-benzo[f]isochromene (3f; Table 2; Entry f). Yield, $108 \mathrm{mg}, 80 \%$; semisolid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21-7.15(\mathrm{~m}$, $1 \mathrm{H}), 7.11-6.93(\mathrm{~m}, 5 \mathrm{H}), 6.87-6.81(\mathrm{~m}, 1 \mathrm{H}), 4.91$ (broad s, 1H), 4.23$4.13(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.62$ $(\mathrm{m}, 2 \mathrm{H}), 2.22-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 1 \mathrm{H})$, $1.61-1.49(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.8,140.6,136.1$, 129.1, 128.6, 126.6, 126.1, 125.7, 123.5, 122.0, 79.3, 69.1, 40.3, 39.1, 31.3, 29.2, 17.0; IR (neat) $\nu_{\max } 2925,2852,1091,702 \mathrm{~cm}^{-1}$; MS (APCI) $m / z 271(\mathrm{M}+\mathrm{H})^{+}$; HRMS $(A P C I)$ calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{OS}, 271.1157$ $(\mathrm{M}+\mathrm{H})^{+}$; found, 271.1164.
$\left(4 R^{*}, 4 \mathrm{a} S^{*}, 10 \mathrm{~b} R^{*}\right)$-4-Isobutyl-8-methoxy-2,4,4a,5,6,10b-hexahydro-1H-benzo[f]isochromene (3g; Table 2; Entry g). The reaction afforded a 3:1 mixture of para/ortho-substituted products. The two regioisomers could be easily separated by silica gel column chromatography. Yield of major regioisomer, $82 \mathrm{mg}, 60 \%$; white solid, $\mathrm{mp} 60-62{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.63(\mathrm{dd}, J=8.5$ and $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{ddd}, J=$ 11.3, 4.5, and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{dt}, J=12.3$ and 2.3 Hz , $1 \mathrm{H}), 3.18-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.25-$ $2.13(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.12$ $(\mathrm{m}, 4 \mathrm{H}), 0.98-0.85(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 157.7$, 137.7, 131.9, 125.6, 113.6, 111.5, 79.6, 67.8, 55.2, 44.2, 42.3, 40.7, 30.9, 29.2, 24.6, 24.2, 24.0, 21.5; IR $(\mathrm{KBr}) \nu_{\max } 2950,2834,1609,1502,1462$, 1238, 1094, 1037, $819 \mathrm{~cm}^{-1}$; MS (APCI) m/z $275(\mathrm{M}+\mathrm{H})^{+}$; HRMS (APCI) calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{2}, 275.2006(\mathrm{M}+\mathrm{H})^{+}$; found, 275.2005.
$\left(4 R^{*}, 4 \mathrm{a} R^{*}, 10 \mathrm{~b} R^{*}\right)$-4-Isobutyl-8-methoxy-2,4,4a,5,6,10b-hexahydro-1H-benzo[f]isochromene (3h; Table 2; Entry h). The reaction afforded a 3:1 mixture of para/ortho-substituted products. The two regioisomers could be easily separated by silica gel column chromatography. Yield of major regioisomer, $79 \mathrm{mg}, 58 \%$; viscous liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=8.3$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.75$ $(\mathrm{s}, 3 \mathrm{H}), 3.57-3.41(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.64(\mathrm{~m}, 3 \mathrm{H}), 1.91-1.46(\mathrm{~m}, 6 \mathrm{H})$, $1.35-1.09(\mathrm{~m}, 2 \mathrm{H}), 0.99-0.81(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 157.6,137.3,133.5,129.5,113.2,112.2,78.2,68.6,55.2,42.0,38.8$, 37.9, 31.9, 29.7, 24.7, 23.2, 22.6, 16.8; IR (KBr) $v_{\max } 2949,2865,1610$, 1500, 1461, 1266, 1090, 1040, $820 \mathrm{~cm}^{-1}$; MS (APCI) m/z $275(\mathrm{M}+\mathrm{H})^{+}$; HRMS (APCI) calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{2}, 275.2006(\mathrm{M}+\mathrm{H})^{+}$; found, 275.2011.

Compound 3i (Table 2; Entry i). Reaction afforded a 3:1 mixture of para/ortho-substituted products. The two regioisomers could be easily separated by silica gel column chromatography. Yield of major regioisomer, $81 \mathrm{mg}, 56 \%$; solid, $\mathrm{mp} 118-120^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.07(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=8.6$ and $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.52$ $(\mathrm{d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.63(\mathrm{~m}, 5 \mathrm{H}), 2.92-2.65(\mathrm{~m}, 3 \mathrm{H}), 2.25-2.07$ $(\mathrm{m}, 2 \mathrm{H}), 1.94-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.30(\mathrm{~m}, 8 \mathrm{H}), 1.20-1.00(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.5,137.7,132.2,126.6,113.5,111.8$, $74.8,60.2,55.2,48.6,36.6,34.9,31.9,30.6,26.3,24.7,24.3,21.3,20.5$; IR $(\mathrm{KBr}) \nu_{\max } 2933,2853,1502,1234,1092,1035,843 \mathrm{~cm}^{-1}$; MS (APCI) $m / z 287(\mathrm{M}+\mathrm{H})^{+}$; HRMS (APCI) calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{2}, 287.2006$ $(\mathrm{M}+\mathrm{H})^{+}$; found, 287.1996.

Compound 3j (Table 2; Entry j). Reaction afforded a 3:1 mixture of para/ortho-substituted products. The two regioisomers could be easily separated by silica gel column chromatography. Yield of major regioisomer, $80 \mathrm{mg}, 56 \%$; semisolid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=8.3$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.52$ (broad $\mathrm{s}, 1 \mathrm{H}), 3.82-3.59(\mathrm{~m}, 5 \mathrm{H}), 3.17-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.63(\mathrm{~m}, 2 \mathrm{H})$, $2.39-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.18(\mathrm{~m}, 14 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 157.5,137.1,133.6,129.7,113.0,112.2,73.5,60.2,55.1,39.6,35.8$, 33.3, 31.6, 31.0, 29.8, 26.1, 21.7, 21.6, 17.1; IR (KBr) $v_{\max } 2929,2854$, 1501, 1267, 1086, 1042, $819 \mathrm{~cm}^{-1}$; MS (APCI) m/z $287(\mathrm{M}+\mathrm{H})^{+}$; HRMS (APCI) calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{2}, 287.2006(\mathrm{M}+\mathrm{H})^{+}$; found, 287.2015.
$\left(4 S^{*}, 4 \mathrm{a} S^{*}, 10 \mathrm{~b} R^{*}\right)$-9-Methyl-4-(4-nitrophenyl)-2,4,4a,5,6,10b-hexahydro-1H-benzo[f]isochromene (3k; Table 2; Entry k). Yield, 145 mg , 90%; white solid, $\mathrm{mp} 109-111{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.21,8.18\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}\right), 7.50,7.47\left(\mathrm{BB}^{\prime}, 2 \mathrm{H}\right), 7.01(\mathrm{~m}, 1 \mathrm{H})$, $6.98-6.84(\mathrm{~m}, 2 \mathrm{H}), 4.43-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-$ $3.72(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.53(\mathrm{~m}, 3 \mathrm{H}), 2.50-2.25(\mathrm{~m}, 4 \mathrm{H}), 1.90-1.69$ $(\mathrm{m}, 1 \mathrm{H}), 1.66-1.22(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.1$, 147.5, 138.1, 135.3, 132.9, 128.9, 128.3, 126.9, 125.4, 123.5, 84.4, 68.6, 45.1, 41.3, 30.6, 28.2, 24.5, 21.2; IR (KBr) $v_{\max } 2919,2842,1518,1346$, 1083, $847 \mathrm{~cm}^{-1}$; ESI-MS $m / z 324(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{3}, 324.1594(\mathrm{M}+\mathrm{H})^{+}$; found, 324.1602.
(4S*,4aR*,10bR*)-9-Methyl-4-(4-nitrophenyl)-2,4,4a,5,6,10b-hexahydro-1H-benzo[f]isochromene (3I; Table 2; Entry I). Yield, 137 mg , 85%; white solid, $\mathrm{mp} 156-158{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.22,8.19\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}\right), 7.48,7.45\left(\mathrm{BB}^{\prime}, 2 \mathrm{H}\right), 6.94-6.82(\mathrm{~m}, 3 \mathrm{H})$, $4.75(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.67(\mathrm{~m}, 1 \mathrm{H})$, $3.14-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$, $2.19-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.17-1.03(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.1,146.9,140.1,135.3,132.5,129.1,128.9$,
127.1, 126.3, 123.3, 80.9, 68.8, 39.6, 39.4, 31.2, 28.6, 20.9, 16.9; IR (KBr) $\nu_{\max }$ 2926, 2850, 1516, 1343, 1090, $710 \mathrm{~cm}^{-1}$; ESI-MS $\mathrm{m} / \mathrm{z} 324$ $(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{3}, 324.1594(\mathrm{M}+\mathrm{H})^{+}$; found, 324.1588.
($4 R^{*}, 4 \mathrm{a} S^{*}, 10 \mathrm{bR},{ }^{*}$) $)$-9-Methyl-4-styryl-2,4,4a,5,6,10b-hexahydro1 H -benzo[f]isochromene (3 m ; Table 2; Entry m). Yield, 128 mg , 84%; solid, mp $100-102{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.33$ $(\mathrm{m}, 2 \mathrm{H}), 7.32-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.96-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=$ $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=15.9$ and $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.18(\mathrm{~m}, 1 \mathrm{H})$, $3.79-3.64(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.23$ $(\mathrm{m}, 4 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.31(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.7,136.7,135.1,133.3,133.1,128.9$, 128.6, 128.5, 127.7, 126.8, 126.5, 125.4, 83.4, 68.0, 43.7, 41.1, 30.6, 28.4, 24.9, 21.2; IR (KBr) $v_{\max } 2921,2838,1494,1442,1088,967,750,693 \mathrm{~cm}^{-1}$; MS (APCI) m/z $305(\mathrm{M}+\mathrm{H})^{+}$; HRMS (APCI) calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}$, $305.1900(\mathrm{M}+\mathrm{H})^{+}$; found, 305.1905.
($4 R^{*}, 4 \mathrm{a} R^{*}, 10 \mathrm{~b} R,{ }^{*} E$)-9-Methyl-4-styryl-2,4,4a,5,6,10b-hexa-hydro-1H-benzo[f] isochromene (3 n ; Table 2; Entry n). Yield, $131 \mathrm{mg}, 86 \%$; white solid, mp $112-114{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.40-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 1 \mathrm{H})$, $6.95-6.80(\mathrm{~m}, 3 \mathrm{H}), 6.60(\mathrm{dd}, J=15.9$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=15.9$ and $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.59$ $(\mathrm{m}, 1 \mathrm{H}), 2.98-2.61(\mathrm{~m}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.69-$ $1.57(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.6,137.0,135.1$, 132.9, 129.7, 129.2, 129.1, 128.9, 128.5, 127.3, 126.9, 126.3, 80.2, 68.5 , 39.1, 38.9, 31.5, 28.9, 21.0, 17.5; IR (KBr) $v_{\text {max }} 2925,2848,1493,1441$, 1142, 1089, 974, 813, 751, $694 \mathrm{~cm}^{-1}$; MS (APCI) m/z $305(\mathrm{M}+\mathrm{H})^{+}$; HRMS (APCI) calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}, 305.1900(\mathrm{M}+\mathrm{H})^{+}$; found, 305.1917.

Typical Procedure for Intramolecular Aza-Prins/FriedelCrafts Cyclization. To a stirred solution of 4-methyl-N-(6-arylhex-3enyl)benzenesulfonamide ($4 ; 0.50 \mathrm{mmol}$) and aldehyde (0.60 mmol) in anhydrous 1,2 -dichloroethane $(4 \mathrm{~mL})$ was added $\mathrm{Sc}(\mathrm{OTf})_{3}(10 \mathrm{~mol} \%)$, and this was heated at $80^{\circ} \mathrm{C}$ under a nitrogen atmosphere for the specified time (Table 3). After completion of the reaction as indicated by TLC, the mixture was quenched with saturated NaHCO_{3} solution $(0.5 \mathrm{~mL})$ and extracted with dichloromethane $(2 \times 5 \mathrm{~mL})$. The organic phases were combined, washed with brine ($3 \times 2 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resulting crude product was purified by silica gel column chromatography ($60-120$ mesh) using ethyl acetate/hexane gradients to afford pure product 5 (Table 3).
$\left(4 S^{*}, 4 \mathrm{a} S^{*}, 10 \mathrm{~b} R^{*}\right)$-4-Cyclohexyl-3-tosyl-1,2,3,4,4a,5,6,10boctahydrobenzo[$f]$ isoquinoline (5a; Table 3; Entry a). Yield, $161 \mathrm{mg}, 76 \%$; white solid, $\mathrm{mp} 124-126{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.73,7.69\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}\right), 7.23,7.19\left(\mathrm{BB}^{\prime}, 2 \mathrm{H}\right), 7.18-6.95(\mathrm{~m}, 4 \mathrm{H})$, $4.06-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.30-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.48(\mathrm{~m}, 3 \mathrm{H}), 2.36$ $(\mathrm{s}, 3 \mathrm{H}), 2.18-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.43(\mathrm{~m}, 10 \mathrm{H}), 1.36-0.92(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.7,139.1,138.5,136.4,129.6,129.1$, 126.6, 126.4, 125.9, 125.8, 62.2, 44.1, 43.0, 36.5, 35.9, 33.4, 31.1, 30.8, 30.2, 27.7, 26.7, 26.5, 26.1, 21.4; IR (KBr) $v_{\max } 2925,2853,1334,1157$, $752 \mathrm{~cm}^{-1}$; ESI-MS $\mathrm{m} / \mathrm{z} 424(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NO}_{2} \mathrm{~S}, 424.2310(\mathrm{M}+\mathrm{H})^{+}$; found, 424.2291.
($4 S^{*}, 4 \mathrm{a} R^{*}, 10 \mathrm{~b} R^{*}$)-4-Cyclohexyl-3-tosyl-1,2,3,4,4a,5,6,10boctahydrobenzo[f]isoquinoline (5b; Table 3; Entry b). Yield, $157 \mathrm{mg}, 74 \%$; white solid, mp $162-164{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.70,7.67\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}\right), 7.23,7.20\left(\mathrm{BB}^{\prime}, 2 \mathrm{H}\right), 7.08-6.89$ $(\mathrm{m}, 4 \mathrm{H}), 3.73-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.08-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.17-$ $2.04(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.41(\mathrm{~m}, 10 \mathrm{H}), 1.32-0.92(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.4,140.3,139.0,135.8,129.2,129.0,128.8$, 126.9, 126.0, 125.6, 64.2, 40.9, 36.1, 34.3, 33.4, 31.4, 29.9, 29.6, 29.5, 26.3, 26.2, 24.1, 21.4; IR (KBr) $v_{\text {max }} 2928,2847,1321,1151,1089,809$, $739 \mathrm{~cm}^{-1}$; ESI-MS $\mathrm{m} / \mathrm{z} 424(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NO}_{2} \mathrm{~S}, 424.2310(\mathrm{M}+\mathrm{H})^{+}$; found, 424.2319.
($4 R^{*}, 4 \mathrm{aS}{ }^{*}, 10 \mathrm{~b} R^{*}$)-4-(4-Chlorophenyl)-3-tosyl-1,2,3,4,4a,5,6,-10b-octahydrobenzo[f] isoquinoline (5 c ; Table 3; Entry c). Yield, $147 \mathrm{mg}, 65 \%$; solid, mp $110-112{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.31-6.92(\mathrm{~m}, 12 \mathrm{H}), 5.17(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.41$ $(\mathrm{dt}, J=12.8$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.64(\mathrm{~m}, 1 \mathrm{H})$, $2.59-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 2 \mathrm{H})$, $1.07-0.95(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.7,137.7,136.6$, 136.3, 136.2, 133.4, 130.4, 129.2, 129.0, 128.0, 126.8, 126.1, 125.9, 60.8 , 43.1, 42.8, 34.1, 30.9, 29.5, 26.6, 21.3; IR (KBr) $\nu_{\text {max }}$ 2924, 1337, 1158, $1094 \mathrm{~cm}^{-1}$; ESI-MS $\mathrm{m} / \mathrm{z} 452\left(\mathrm{M}+\mathrm{H}^{+}\right.$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{SCl}, 452.1451(\mathrm{M}+\mathrm{H})^{+}$; found, 452.1459.
($4 R^{*}, 4 \mathrm{a} R^{*}, 10 \mathrm{~b} R^{*}$)-4-(4-Chlorophenyl)-3-tosyl-1,2,3,4,4a,5,6,-10b-octahydrobenzo[f]isoquinoline (5 d ; Table 3; Entry d). Yield, $153 \mathrm{mg}, 68 \%$; white solid, $\mathrm{mp} 122-124^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.71,7.69\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}\right), 7.29-7.19(\mathrm{~m}, 6 \mathrm{H}), 7.08-6.96$ $(\mathrm{m}, 3 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 1 \mathrm{H}), 5.22$ (broad $\mathrm{s}, 1 \mathrm{H}), 3.84-3.73$ $(\mathrm{m}, 1 \mathrm{H}), 3.07(\mathrm{dt}, J=13.6$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.74$ ($\mathrm{td}, J=12.1$ and $4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.64-2.53 (m, 1H), 2.44 ($\mathrm{s}, 3 \mathrm{H}$), $1.98-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.57-1.45(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 143.1,139.9,138.4,137.4,135.3,132.8,129.6,129.1,128.8,128.7$, 128.5, 126.9, 126.3, 125.8, 60.7, 41.4, 36.6, 34.1, 30.0, 29.3, 23.7, 21.5; IR (KBr) $\nu_{\max }$ 2925, 1491, 1342, 1156, 1092, $710 \mathrm{~cm}^{-1}$; ESI-MS $m / z 474$ $(\mathrm{M}+\mathrm{Na})^{+}$; $\mathrm{HRMS}(\mathrm{ESI})$ calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{SCl}, 452.1451(\mathrm{M}+\mathrm{H})^{+}$; found, 452.1433.
($4 S^{*}, 4 \mathrm{a} S^{*}, 10 \mathrm{~b} R^{*}$)-4-Isobutyl-3-tosyl-1,2,3,4,4a,5,6,10boctahydrobenzo[f]isoquinoline (5e; Table 3; Entry e). Yield, $155 \mathrm{mg}, 78 \%$; solid, $\mathrm{mp} 125-127^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.72, $7.70\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}\right), 7.23,7.21\left(\mathrm{BB}^{\prime}, 2 \mathrm{H}\right), 7.13-6.97(\mathrm{~m}, 4 \mathrm{H}), 4.22-$ $4.15(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.69$ $(\mathrm{m}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.40(\mathrm{~m}, 5 \mathrm{H}), 1.25-$ $1.04(\mathrm{~m}, 2 \mathrm{H}), 1.02-0.82(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.9,138.8,138.7,136.5,129.6,129.1,126.9,125.8,55.8,42.0$, 40.8, 35.4, 34.2, 30.1, 24.2, 24.1, 21.5, 21.4; IR (KBr) $v_{\text {max }} 2925,2864$, 1336, 1156, 1092, $744 \mathrm{~cm}^{-1}$; ESI-MS m/z $398(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{~S}, 398.2153(\mathrm{M}+\mathrm{H})^{+}$; found, 398.2145 .
$\left(4 S^{*}, 4 \mathrm{a} R^{*}, 10 \mathrm{~b} R^{*}\right)$-4-Isobutyl-3-tosyl-1,2,3,4,4a,5,6,10boctahydrobenzo[f]isoquinoline (5f; Table 3; Entry f). Crystals for XRD were obtained by dissolving compound in 4 mL of ethanol, followed by slow evaporation of solvent over 4 days. Yield, $159 \mathrm{mg}, 80 \%$; white solid, $\mathrm{mp} 116-118{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70,7.68$ ($\left.\mathrm{AA}^{\prime}, 2 \mathrm{H}\right), 7.25,7.23\left(\mathrm{BB}^{\prime}, 2 \mathrm{H}\right), 7.09-6.96(\mathrm{~m}, 4 \mathrm{H}), 4.03(\mathrm{dt}, J=6.8$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{dt}, J=12.7$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.95(\mathrm{td}, J=11.7$ and $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$, $1.98-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 1 \mathrm{H}), 0.96-$ $0.85(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.7,140.2,138.6,135.8$, 129.4, 129.1, 128.9, 127.0, 126.1, 125.6, 56.8, 40.4, 39.0, 36.3, 33.9, 30.4, 29.3, 25.2, 23.7, 23.0, 22.3, 21.4; IR (KBr) $v_{\text {max }} 2927,2869,1329,1156$, 1093, $744 \mathrm{~cm}^{-1}$; ESI-MS $m / z 420(\mathrm{M}+\mathrm{Na})^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{~S}, 398.2153(\mathrm{M}+\mathrm{H})^{+}$; found, 398.2140 .
($4 \mathrm{aS}{ }^{*}, 10 \mathrm{bR} R^{*}$)-3-Tosyl-1,2,3,4,4a,5,6,10b-octahydrobenzo[f]isoquinoline (5 g ; Table 3, Entry g). Yield, $140 \mathrm{mg}, 82 \%$; solid, mp $142-144{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66,7.64\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}\right)$, $7.32,7.30\left(\mathrm{BB}^{\prime}, 2 \mathrm{H}\right), 7.14-6.99(\mathrm{~m}, 4 \mathrm{H}), 4.03-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.86-$ $3.80(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.30(\mathrm{~m}, 2 \mathrm{H})$, $2.20-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.56(\mathrm{~m}, 3 \mathrm{H})$, $1.45-1.34(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.4,137.8,136.3$, 133.2, 129.6, 129.1, 127.6, 126.1, 125.8, 124.9, 52.0, 46.8, 41.5, 38.4, 29.4, 28.9, 26.7, 21.5; IR (KBr) $v_{\text {max }}$ 2921, 2836, 1339, 1164, 1092, 925, 812, $754,733,656 \mathrm{~cm}^{-1}$; ESI-MS $m / z 342(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}, 342.1528(\mathrm{M}+\mathrm{H})^{+}$; found, 342.1519.
($4 \mathrm{a} R^{*}, 10 \mathrm{~b} R^{*}$)-3-Tosyl-1,2,3,4,4a,5,6,10b-octahydrobenzo[f] isoquinoline (5 h ; Table 3, Entry h). Yield, $136 \mathrm{mg}, 80 \%$; solid, $\mathrm{mp} 167-169{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63,7.61\left(\mathrm{AA}^{\prime}\right.$, $2 \mathrm{H}), 7.31,7.29\left(\mathrm{BB}^{\prime}, 2 \mathrm{H}\right), 7.08-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 1 \mathrm{H})$,
$3.75-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.64(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.52$ $(\mathrm{m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{dt}, J=12.0$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.14$ $(\mathrm{m}, 1 \mathrm{H}), 2.07-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.3,139.7,135.8,133.1,129.5,129.2$, 128.5, 127.7, 126.1, 125.7, 51.4, 46.6, 37.8, 33.5, 30.7, 29.1, 22.4, 21.5; IR (KBr) $v_{\max } 2926,2856,1336,1159,1093,954,719,668 \mathrm{~cm}^{-1}$; ESI-MS $m / z 342(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}, 342.1528$ $(\mathrm{M}+\mathrm{H})^{+}$; found, 342.1540.
$\left(4 S^{*}, 4 \mathrm{aS}{ }^{*}, 10 \mathrm{~b} R^{*}\right)$-4-Ethyl-8-methoxy-3-tosyl-1,2,3,4,4a,5,6,-10b-octahydrobenzo[f]isoquinoline (5i; Table 3; Entry i). Reaction afforded a 2:1 mixture of para/ortho-substituted products. The two regioisomers could be easily separated by silica gel column chromatography. Yield of major regioisomer, $100 \mathrm{mg}, 50 \%$; solid, $\mathrm{mp} 119-121^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74,7.71\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}\right), 7.24,7.21\left(\mathrm{BB}^{\prime}, 2 \mathrm{H}\right)$, $7.06(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=8.7$ and $2.6 \mathrm{~Hz}, 1 \mathrm{H}) 6.57(\mathrm{~d}, J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.08-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.23-3.09$ $(\mathrm{m}, 1 \mathrm{H}), 2.81-2.58(\mathrm{~m}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.38$ $(\mathrm{m}, 5 \mathrm{H}), 1.19-1.02(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 157.5,142.8,138.9,137.7,130.8,129.6,126.8,113.6,111.9,59.3$, $55.1,42.3,40.6,34.8,30.3,26.6,21.5,17.9,11.1$; IR (KBr) $v_{\text {max }} 2922,2853$, $1490,1230,752 \mathrm{~cm}^{-1}$; ESI-MS $m / z 400(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}, 400.1946(\mathrm{M}+\mathrm{H})^{+}$; found, 400.1953.
($4 S^{*}, 4 \mathrm{a} R^{*}, 10 \mathrm{~b} R^{*}$)-4-Ethyl-8-methoxy-3-tosyl-1,2,3,4,4a,5,6, 10b-octahydrobenzo[f]isoquinoline (5j; Table 3; Entry j). Reaction afforded a $2: 1$ mixture of para/ortho-substituted products. The two regioisomers could be easily separated by silica gel column chromatography. Yield of major regioisomer, $96 \mathrm{mg}, 48 \%$; white solid, mp $110-112{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69,7.66$ ($\left.\mathrm{AA}^{\prime}, 2 \mathrm{H}\right), 7.25,7.22\left(\mathrm{BB}^{\prime}, 2 \mathrm{H}\right), 6.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=$ 8.3 and $2.3 \mathrm{~Hz}, 1 \mathrm{H}) 6.50(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dt}, J=7.6$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.09-2.94(\mathrm{~m}, 1 \mathrm{H})$, $2.92-2.66(\mathrm{~m}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.46$ (m, 5H), $0.90(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.7,142.6,138.7,137.0,132.5,129.7,129.4,126.9,113.3,112.2$, 60.4, 55.1, 40.3, 35.9, 33.2, 30.5, 29.7, 23.7, 23.0, 21.4, 11.4; IR (KBr) $v_{\text {max }}$ 2929, 2873, 1608, 1499, 1328, 1156, 1090, 755, $666 \mathrm{~cm}^{-1}$; ESI-MS $m / z 400(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}, 400.1946$ $(\mathrm{M}+\mathrm{H})^{+}$; found, 400.1950.
$\left(4 S^{*}, 4 \mathrm{a} S^{*}, 10 \mathrm{~b} R^{*}\right)$-8-Methoxy-4-phenethyl-3-tosyl-1,2,3,4, 4a,5,6,10b-octahydrobenzo[f]isoquinoline (5k; Table 3; Entry k). Reaction afforded a 2:1 mixture of para/ ortho-substituted products. The two regioisomers could be easily separated by silica gel column chromatography. Yield of major regioisomer, 128 mg , 54%; solid, $\mathrm{mp} 112-114^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72$, $7.70\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}\right), 7.26-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=8.9$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.17-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $3.26-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.52(\mathrm{~m}, 5 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.04$ $(\mathrm{m}, 1 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.39(\mathrm{~m}, 2 \mathrm{H})$, $1.16-1.05(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.5,142.9$, 142.1, 138.8, 137.6, 130.6, 129.7, 128.3, 126.8, 125.8, 113.6, 111.9, $57.7,55.1,42.1,40.9,34.8,32.9,30.3,30.2,27.5,26.5,21.4$; IR (KBr) $v_{\text {max }}$ 2925, 2861, 1499, 1332, 1155, 754, $707 \mathrm{~cm}^{-1}$; ESI-MS m/z 476 $(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{NO}_{3} \mathrm{~S}, 476.2259(\mathrm{M}+\mathrm{H})^{+}$; found, 476.2269.
$\left(4 S^{*}, 4 \mathrm{a} R^{*}, 10 \mathrm{~b} R^{*}\right)$-8-Methoxy-4-phenethyl-3-tosyl-1,2,3,4, 4a,5,6,10b-octahydrobenzo[f]isoquinoline (51; Table 3; Entry I). Reaction afforded a $2: 1$ mixture of para/ortho-substituted products. The two regioisomers could be easily separated by silica gel column chromatography. Yield of major regioisomer, 124 mg , 52%; white solid, $\mathrm{mp} 128-130{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.67,7.65\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}\right), 7.28-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 1 \mathrm{H})$, $7.09-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=8.3$ and $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dt}, J=7.6$ and 0.9 Hz ,

1H), 3.79-3.65 (m, 4H), 3.13-2.97 (m, 1H), 2.96-2.84 (m, 1H), $2.83-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.74$ $(\mathrm{m}, 4 \mathrm{H}), 1.68-1.46(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.8$, 142.8, 141.5, 138.6, 137.0, 132.4, 129.8, 129.5, 128.4, 128.3, 126.9, $125.9,113.3,112.3,58.6,55.2,40.4,36.5,33.4,33.3,32.3,30.6$, 29.7, 23.6, 21.5; IR (KBr) $v_{\text {max }} 2940,1607,1501,1320,1152,1098$, 963, 921, 711, $670 \mathrm{~cm}^{-1}$; ESI-MS m/z $476(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{NO}_{3} \mathrm{~S}, 476.2259(\mathrm{M}+\mathrm{H})^{+}$; found, 476.2236 .
($4 R^{*}, 4 \mathrm{a} S^{*}, 10 \mathrm{~b} R^{*}$)-4-(4-Bromophenyl)-9-methyl-3-tosyl-1,2, 3,4,4a,5,6,10b-octahydrobenzo[f]isoquinoline (5m; Table 3; Entry m). Yield, $166 \mathrm{mg}, 65 \%$; white solid, $\mathrm{mp} 190-192^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.10-6.95(\mathrm{~m}, 5 \mathrm{H}), 6.85$ $(\mathrm{s}, 2 \mathrm{H}), 5.13(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{dt}, J=12.8$ and $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $2.27(\mathrm{~s}, 3 \mathrm{H}), 2.13-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.06-0.82(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.7,137.4,137.1,136.3,135.4,133.1$, 131.0, 130.7, 129.1, 129.0, 127.0, 126.8, 126.6, 121.5, 61.0, 43.2, 42.8, 34.0, 31.0, 29.2, 26.7, 21.4, 21.1; IR (KBr) $v_{\text {max }} 2921,2858,1334,1154$, 1106, 1001, 809, $583 \mathrm{~cm}^{-1}$; ESI-MS m/z $510(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{SBr}$, $510.1102(\mathrm{M}+\mathrm{H})^{+}$; found, 510.1084.
($4 R^{*}, 4 \mathrm{a} R^{*}, 10 \mathrm{~b} R^{*}$)-4-(4-Bromophenyl)-9-methyl-3-tosyl-1,2, 3,4,4a,5,6,10b-octahydrobenzo[f] isoquinoline (5 n ; Table 3; Entry n). Yield, $168 \mathrm{mg}, 66 \%$; white solid, $\mathrm{mp} 158-160^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71,7.69\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}\right), 7.41,7.38\left(\mathrm{~A}_{1} \mathrm{~A}_{1}{ }^{\prime}, 2 \mathrm{H}\right), 7.26$, $7.24\left(\mathrm{BB}^{\prime}, 2 \mathrm{H}\right), 7.17,7.14\left(\mathrm{~B}_{1} \mathrm{~B}_{1}{ }^{\prime}, 2 \mathrm{H}\right), 6.95-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H})$, 5.19 (broad s, 1H), 3.86-3.72 (m, 1H), 3.13-2.97 (m, 1H), 2.96-2.62 (m, 3H), 2.61-2.50 (m, 1H), $2.44(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.43$ (m, 4H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.1,139.7,138.3,138.0,135.3$, 132.1, 131.7, 129.5, 129.3, 128.9, 128.8, 127.2, 126.9, 120.9, 60.8, 41.5, 36.6, 34.1, 29.9, 28.9, 23.8, 21.5, 20.8; IR (KBr) $v_{\max } 2916,2863,1334$, 1156, 1092, 947, 812, $546 \mathrm{~cm}^{-1}$; ESI-MS $m / z 510(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{SBr}$, $510.1102(\mathrm{M}+\mathrm{H})^{+}$; found, 510.1114.
($4 S^{*}, 4 \mathrm{a} S^{*}, 10 \mathrm{~b} R^{*}, E$)-9-Methyl-4-styryl-3-tosyl-1,2,3,4,4a,5,6, 10b-octahydrobenzo[f]isoquinoline (5o; Table 3; Entry o). Yield, $169 \mathrm{mg}, 74 \%$; white solid, $\mathrm{mp} 190-192^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.62,7.60\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}\right), 7.22,7.20\left(\mathrm{BB}^{\prime}, 2 \mathrm{H}\right), 7.19-7.13(\mathrm{~m}, 1 \mathrm{H})$, $7.11-7.03(\mathrm{~m}, 4 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.90-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.90(\mathrm{dd}, J=15.8$ and $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.95$ $(\mathrm{m}, 1 \mathrm{H}), 3.15(\mathrm{dt}, J=12.8$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.77-$ $2.69(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H})$, $1.95-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.51-$ $1.39(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.9,137.8,136.9,136.3$, 135.3, 134.8, 133.3, 129.3, 129.1, 128.3, 127.7, 127.5, 126.9, 126.3, 120.8, 60.5, 43.3, 42.1, 36.1, 31.0, 29.2, 26.7, 21.3, 21.1; IR (KBr) $v_{\text {max }} 2923$, 1337, 1155, $660 \mathrm{~cm}^{-1}$; ESI-MS m/z $458(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{~S}, 458.2153(\mathrm{M}+\mathrm{H})^{+}$; found, 458.2144 .
($4 S^{*}, 4 \mathrm{a} R^{*}, 10 \mathrm{~b} R^{*}, E$)-9-Methyl-4-styryl-3-tosyl-1,2,3,4,4a,5,6, 10b-octahydrobenzo[f]isoquinoline (5p; Table 3; Entry p). Yield, $172 \mathrm{mg}, 75 \%$; white solid, $\mathrm{mp} 184-186^{\circ} \mathrm{C}$; ${ }^{1}$ H NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.70,7.68\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}\right), 7.33-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{~m}, 2 \mathrm{H}), 7.04-$ $6.89(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=15.9$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=6.0$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.77(\mathrm{~m}, 1 \mathrm{H})$, $3.12(\mathrm{dt}, J=12.8$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.74(\mathrm{~m}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.26$ ($\mathrm{s}, 3 \mathrm{H}), 2.19-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.65(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 142.9,139.9,137.6,136.5,135.2,132.5,129.4,129.3,129.0$, 128.4, 127.6, 127.4, 127.2, 126.2, 126.0, 60.4, 41.4, 39.1, 34.4, 30.7, 28.8, 23.3, 21.4, 20.9; IR (KBr) $\nu_{\text {max }} 2929,2858,1333,1154,1094,974$, $746,677 \mathrm{~cm}^{-1}$; ESI-MS $m / z 458(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{~S}, 458.2153(\mathrm{M}+\mathrm{H})^{+}$; found, 458.2147.

Typical Procedure for Intramolecular Thia-Prins/FriedelCrafts Cyclization. To a stirred solution of 6 -arylhex-3-ene-1-thiol ($6 ; 0.50 \mathrm{mmol}$) and aldehyde (0.60 mmol) in anhydrous dichloromethane (5 mL) was added $\mathrm{Sc}(\mathrm{OTf})_{3}(10 \mathrm{~mol} \%)$, and this was stirred at room temperature under a nitrogen atmosphere for the specified time
(Table 4). After completion of the reaction as indicated by TLC, the mixture was quenched with saturated NaHCO_{3} solution $(0.5 \mathrm{~mL})$ and extracted with dichloromethane $(2 \times 5 \mathrm{~mL})$. The organic phases were combined, washed with brine $(3 \times 2 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resulting crude product was purified by silica gel column chromatography (100-200 mesh) using ethyl acetate/hexane gradients to afford pure product 7 (Table 4).
(4S* $4 \mathrm{aS}{ }^{*}, 10 \mathrm{~b} R^{*}$)-4-(2-Fluorophenyl)-2,4,4a,5,6,10b-hexa-hydro-1H-benzo[f]isothiochromene (7a; Table 4; Entry a). Crystals for XRD were obtained by dissolving compound in 4 mL of ethanol, followed by slow evaporation of solvent over 4 days. Yield, 128 mg , 86%; solid, mp $100-102{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42$ $(\mathrm{dt}, J=7.6$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.15-6.95(\mathrm{~m}, 5 \mathrm{H})$, $4.16(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.78(\mathrm{~m}, 2 \mathrm{H})$, $2.77-2.56(\mathrm{~m}, 3 \mathrm{H}), 2.10-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.68-$ $1.55(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.27(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.5$ $(\mathrm{d}, J=245.9 \mathrm{~Hz}), 138.9,137.0,130.0(\mathrm{~d}, J=26.9 \mathrm{~Hz}), 129.0,128.7(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}), 125.9,125.6,124.6(\mathrm{~d}, J=3.3 . \mathrm{Hz}), 115.4(\mathrm{~d}, J=23.1 \mathrm{~Hz}), 46.5$, 44.0, 33.1, 30.7, 29.6, 26.6; IR (KBr) $v_{\max }$ 2920, 2852, 1484, 1223, 1087, $751 \mathrm{~cm}^{-1}$; MS (APCI) m/z $299(\mathrm{M}+\mathrm{H})^{+}$; HRMS (APCI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FS}, 299.1270(\mathrm{M}+\mathrm{H})^{+}$; found, 299.1275.
(4S*,4aR*,10bR*)-4-(2-Fluorophenyl)-2,4,4a,5,6,10b-hexa-hydro-1H-benzo[f]isothiochromene (7b; Table 4; Entry b). Yield, $125 \mathrm{mg}, 84 \%$; solid, $\mathrm{mp} 94-96{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.38-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.30-6.99(\mathrm{~m}, 7 \mathrm{H}), 4.72(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.05$ $(\mathrm{dt}, J=13.1$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.76(\mathrm{~m}, 2 \mathrm{H})$, $2.70-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.04-$ $1.97(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.41(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6(\mathrm{~d}, J=245.9 \mathrm{~Hz}$), 141.4, 135.9, 130.5 (d, $J=$ $18.1 \mathrm{~Hz}), 129.9(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 129.0,128.8,126.0,125.6,123.7(\mathrm{~d}, J=$ 3.3. Hz), $115.3(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 44.9,42.5,38.9,31.4,30.5,29.0,16.9$; IR $(\mathrm{KBr}) v_{\max } 2923,2855,1489,1453,1228,759 \mathrm{~cm}^{-1}$; MS (APCI) m/z $299(\mathrm{M}+\mathrm{H})^{+}$; HRMS (APCI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FS}$, $299.1270(\mathrm{M}+\mathrm{H})^{+}$; found, 299.1259.
$\left(4 S^{*}, 4 \mathrm{a} S^{*}, 10 \mathrm{~b} R^{*}\right)$-4-(Thiophen-2-yl)-2,4,4a,5,6,10b-hexa-hydro-1H-benzo[f]isothiochromene (7c; Table 4; Entry c). Yield, $115 \mathrm{mg}, 80 \%$; solid, $\mathrm{mp} 100-102{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.03$ $(\mathrm{m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.88$ $(\mathrm{m}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.65(\mathrm{~m}$, $4 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.76(\mathrm{~m}, 2 \mathrm{H})$, $1.33-1.20(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.2,138.7,137.0$, 128.9, 126.4, 125.8, 125.7, 125.6, 124.5, 49.0, 47.3, 44.0, 32.9, 30.8, 29.7, 26.8; IR (KBr) $\nu_{\text {max }} 2905,2852,743,695 \mathrm{~cm}^{-1}$; MS (APCI) m/z 287 $(\mathrm{M}+\mathrm{H})^{+}$; HRMS (APCI) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~S}_{2}, 287.0928(\mathrm{M}+\mathrm{H})^{+}$; found, 287.0917.
$\left(4 S^{*}, 4 \mathrm{a} R^{*}, 10 \mathrm{~b} R^{*}\right)$-4-(Thiophen-2-yl)-2,4,4a,5,6,10b-hexa-hydro-1H-benzo[f]isothiochromene (7d; Table 4; Entry d). Yield, $117 \mathrm{mg}, 82 \%$; solid, $\mathrm{mp} 105-107{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-6.96(\mathrm{~m}, 4 \mathrm{H}), 6.95-6.88(\mathrm{~m}$, $2 \mathrm{H}), 4.52(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dt}, J=12.8$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.92-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.29-$ $2.16(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.85(\mathrm{~m}, 2 \mathrm{H}), 171-1.62(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 144.1, 141.3, 136.0, 129.0, 128.7, 126.6, 126.1, 125.6, 124.5, 123.8, 47.2, 42.4, 41.3, 31.4, 30.7, 29.0, 17.3; IR (KBr) $v_{\text {max }} 2925,2855$, 1224, 1034, $698 \mathrm{~cm}^{-1}$; MS (APCI) m/z $287(\mathrm{M}+\mathrm{H})^{+}$; HRMS (APCI) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~S}_{2}, 287.0928(\mathrm{M}+\mathrm{H})^{+}$; found, 287.0929.
($4 R^{*}, 4 \mathrm{a} S^{*}, 10 \mathrm{bR}{ }^{*}, E$)-4-Styryl-2,4,4a,5,6,10b-hexahydro-1Hbenzo[f] isothiochromene (7e; Table 4; Entry e). Yield, 135 mg , 88%; solid, $\mathrm{mp} 96-98^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.02$ $(\mathrm{m}, 9 \mathrm{H}), 6.62(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=15.8$ and $9.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.49(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.62(\mathrm{~m}, 3 \mathrm{H})$, $2.59-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.85-$
$1.62(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.26(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 138.9,137.1,136.6,133.1,129.0,128.9,128.5,127.6,126.3,125.8$, 50.3, 46.5, 43.2, 33.0, 29.8, 27.5,; IR (KBr) $v_{\text {max }} 2922,2853,1489,1445$, 966, 740, $693 \mathrm{~cm}^{-1}$; MS (APCI) m/z $307(\mathrm{M}+\mathrm{H})^{+}$; HRMS (APCI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~S}, 307.1515(\mathrm{M}+\mathrm{H})^{+}$; found, 307.1510.
$\left(4 R^{*}, 4 \mathrm{a} R^{*}, 10 \mathrm{bR}{ }^{*}, E\right)-4$-Styryl-2,4,4a,5,6,10b-hexahydro-1Hbenzo[f] isothiochromene (7f; Table 4; Entry f). Yield, 130 mg , 85%; solid, mp $84-86{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-$ $7.31(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.09(\mathrm{~m}, 4 \mathrm{H}), 7.08-6.93(\mathrm{~m}, 3 \mathrm{H}), 6.55(\mathrm{~d}, J=15.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=15.9$ and $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.99-2.56 (m, 5H), 2.42-2.14 (m, 3H), 1.98-1.74 (m, 2H); ${ }^{13}$ C NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.5,136.8,136.0,131.8,129.0,128.9,128.7,128.5$, 127.5, 126.3, 126.0, 125.6, 49.4, 42.2, 39.5, 31.4, 29.9, 29.1, 17.4; IR (neat) $v_{\text {max }}$ 2923, 2853, 1492, 1449, 963, 745, $696 \mathrm{~cm}^{-1}$; MS (APCI) m/z $307(\mathrm{M}+\mathrm{H})^{+}$; HRMS (APCI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~S}, 307.1515(\mathrm{M}+\mathrm{H})^{+}$; found, 307.1524.
($4 S^{*}, 4 \mathrm{a} S^{*}, 10 \mathrm{~b} R^{*}$)-8-Methoxy-4-(naphthalen-2-yl)-2,4,4a,5, 6,10b-hexahydro-1H-benzo[f]isothiochromene (7 g ; Table 4; Entry g). Reaction afforded a $3: 1$ mixture of para/ortho-substituted products. The two regioisomers could be easily separated by silica gel column chromatography. Yield of major regioisomer, $106 \mathrm{mg}, 59 \%$; solid, mp $125-127^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.76$ $(\mathrm{m}, 4 \mathrm{H}), 7.55-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.8$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ $(\mathrm{s}, 3 \mathrm{H}), 3.20-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.56(\mathrm{~m}, 3 \mathrm{H})$, $2.20-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.37-$ $1.24(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.6,138.4,133.4$, 132.9, 131.2, 128.4, 127.8, 127.6, 127.3, 126.8, 126.1, 126.0, 125.8, 113.5, $112.0,55.2,52.8,46.9,43.5,33.4,30.8,30.0,27.0$; IR (KBr) $v_{\max } 2924$, 2855, 1498, 1240, 1034, $783 \mathrm{~cm}^{-1}$; MS (APCI) m/z $361(\mathrm{M}+\mathrm{H})^{+}$; HRMS (APCI) calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{OS}, 361.1621(\mathrm{M}+\mathrm{H})^{+}$; found, 361.1630.
($4 S^{*}, 4 \mathrm{a} R^{*}, 10 \mathrm{~b} R^{*}$)-8-Methoxy-4-(naphthalen-2-yl)-2,4,4a, 5,6,10b-hexahydro-1H-benzo[f]isothiochromene (7 h ; Table 4; Entry h). Reaction afforded a 3:1 mixture of para/ortho-substituted products. The two regioisomers could be easily separated by silica gel column chromatography. Yield of major regioisomer, $108 \mathrm{mg}, 60 \%$; solid, mp $142-144{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82-7.73$ $(\mathrm{m}, 3 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.63$ (dd, $J=7.9$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{dt}, J=12.8$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.84$ $(\mathrm{m}, 1 \mathrm{H}), 2.83-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 1 \mathrm{H})$, $2.28-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.41(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 157.8, 138.7, 137.2, 133.9, 133.2, 132.4, 129.6, 127.9, 127.8, 127.5, 126.5, 126.2, 126.1, 125.7, 113.2, 112.2, 55.2, 52.3, 42.3, 41.3, 31.7, 30.4, 29.4, 16.6; IR (KBr) $v_{\max }$ 2932, 2845, 1497, 1226, 1156, 1034, 818, $755 \mathrm{~cm}^{-1}$; MS (APCI) m/z $361(\mathrm{M}+\mathrm{H})^{+}$; HRMS (APCI) calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{OS}, 361.1621(\mathrm{M}+\mathrm{H})^{+}$; found, 361.1612.
($4 R^{*}, 4 \mathrm{a} S^{*}, 10 \mathrm{~b} R^{*}$)-8-Methoxy-4-propyl-2,4,4a,5,6,10b-hexahydro-1H-benzo[f]isothiochromene (7i; Table 4; Entry i). Reaction afforded a 3:1 mixture of para/ortho-substituted products. The two regioisomers could be easily separated by silica gel column chromatography. Yield of major regioisomer, $81 \mathrm{mg}, 59 \%$; viscous liquid; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=9.1$ and 3.0 Hz , $1 \mathrm{H}), 6.61(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.01-2.87(\mathrm{~m}, 1 \mathrm{H})$, $2.85-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.47-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.76$ $(\mathrm{m}, 1 \mathrm{H}), 1.72-1.23(\mathrm{~m}, 6 \mathrm{H}) 0.94(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 157.4,138.2,131.7,126.9,113.3,111.8,55.1,47.2,46.7,43.3$, $34.6,33.6,30.1,29.1,25.9,19.6,14.2$; IR (neat) $v_{\max } 2925,2865,1610$, 1501, 1459, 1254, 1043, $777 \mathrm{~cm}^{-1}$; MS (APCI) m/z $277\left(\mathrm{M}+\mathrm{H}^{+}\right.$; HRMS (APCI) calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{OS}, 277.1621(\mathrm{M}+\mathrm{H})^{+}$; found, 277.1627.
$\left(4 R^{*}, 4 \mathrm{a} R^{*}, 10 \mathrm{~b} R^{*}\right)$-8-Methoxy-4-propyl-2,4,4a,5,6,10b-hexahydro-1H-benzo[f]isothiochromene (7j; Table 4; Entry j). Reaction afforded a 3:1 mixture of para/ortho-substituted products. The two regioisomers could be easily separated by silica gel column
chromatography. Yield of major regioisomer, $80 \mathrm{mg}, 58 \%$; viscous liquid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=7.9$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.03-2.95(\mathrm{~m}, 1 \mathrm{H})$, $2.93-2.70(\mathrm{~m}, 3 \mathrm{H}), 2.62-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.98$ $(\mathrm{m}, 1 \mathrm{H}), 1.90-1.71(\mathrm{~m}, 2 \mathrm{H}) 1.69-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.38(\mathrm{~m}, 4 \mathrm{H})$, $0.95(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.6,137.3,134.3$, 129.6, 113.2, 112.0, 55.1, 47.0, 41.9, 38.5, 35.3, 32.2, 29.9, 29.4, 20.4, 16.6, 13.0; IR (neat) $\nu_{\max } 2925,2860,1608,1499,1460,1263,1153,1043$, $776 \mathrm{~cm}^{-1}$; MS (APCI) m/z $277(\mathrm{M}+\mathrm{H})^{+}$; HRMS (APCI) calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{OS}, 277.1621(\mathrm{M}+\mathrm{H})^{+}$; found, 277.1618.
(4S*,4aS*,10bR*)-9-Methyl-4-(2-nitrophenyl)-2,4,4a,5,6,10b-hexahydro-1H-benzo[f]isothiochromene (7 k ; Table 4; Entry k). Yield, 156 mg , 92%; solid, $\mathrm{mp} 150-152{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.77(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 1 \mathrm{H})$, $7.42-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=10.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.19-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.60(\mathrm{~m}, 3 \mathrm{H}), 2.32$ $(\mathrm{s}, 3 \mathrm{H}), 2.13-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 1 \mathrm{H})$, $1.46-1.35(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.2,138.3,135.3$, 133.6, 132.9, 129.5, 128.9, 128.0, 126.8, 126.3, 124.0, 47.4, 45.3, 43.8, 33.2, 30.9, 29.2, 26.8, 21.3; IR (KBr) $v_{\max } 2925,2846,1532,1342,801,742 \mathrm{~cm}^{-1}$; MS (APCI) m/z $340(\mathrm{M}+\mathrm{H})^{+}$; HRMS (APCI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}$, $340.1366(\mathrm{M}+\mathrm{H})^{+}$; found, 340.1357.
$\left(4 S^{*}, 4 \mathrm{a} R^{*}, 10 \mathrm{~b} R^{*}\right)$-9-Methyl-4-(2-nitrophenyl)-2,4,4a,5,6,10b-hexahydro-1H-benzo[f]isothiochromene (7I; Table 4; Entry I). Yield, $153 \mathrm{mg}, 90 \%$; solid, $\mathrm{mp} 130-132{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 1 \mathrm{H})$, $6.90-6.81(\mathrm{~m}, 3 \mathrm{H}), 4.89(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dt}, J=12.8$ and 2.7 Hz , $1 \mathrm{H}), 2.93-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.48-$ $2.39(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.24(\mathrm{~m}, 4 \mathrm{H}), 2.06-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 1 \mathrm{H})$, $1.51-1.42(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.9,138.7,135.8$, 135.2, 133.1, 132.4, 130.8, 130.5, 128.9, 128.3, 127.5, 124.3, 47.0, 42.5, 38.9, 35.3, 32.6, 29.3, 27.1, 21.0; IR (KBr) $\nu_{\max } 2919,2847,1523,1340,794$, $747 \mathrm{~cm}^{-1}$; MS (APCI) m/z $340(\mathrm{M}+\mathrm{H})^{+}$; HRMS (APCI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}, 340.1366(\mathrm{M}+\mathrm{H})^{+}$; found, 340.1382.

Typical Procedure for Intramolecular Prins- and Aza-Prins/ Friedel-Crafts Cyclization with Styrene Oxide. To a stirred solution of homoallylic substrate $(0.50 \mathrm{mmol})$ and styrene oxide $(0.75 \mathrm{mmol})$ in anhydrous dichloroethane $(5 \mathrm{~mL})$ was added $\mathrm{Sc}(\mathrm{OTf})_{3}(10 \mathrm{~mol} \%)$ and stirred at room temperature under nitrogen atmosphere for the specified time (Table 5). After completion of the reaction as indicated by TLC, the mixture was quenched with saturated NaHCO_{3} solution $(0.5 \mathrm{~mL})$ and extracted with dichloromethane $(2 \times 5 \mathrm{~mL})$. The organic phases were combined, washed with brine $(3 \times 2 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resulting crude product was purified by silica gel column chromatography using ethyl acetate/hexane gradients to afford pure product 8 (Table 5). (Yields are reported with respect to phenyl acetaldehyde since it afforded higher yield than styrene oxide).
$\left(4 R^{*}, 4 \mathrm{a} S^{*}, 10 \mathrm{~b} R^{*}\right)$-4-Benzyl-8-methoxy-2,4,4a,5,6,10b-hexahydro-1H-benzo[f]isochromene (8a; Table 5; Entry a). Reaction afforded a 3:1 mixture of para/ortho-substituted products. The two regioisomers could be easily separated by silica gel column chromatography. Yield of major regioisomer, $94 \mathrm{mg}, 61 \%$; white solid, $\mathrm{mp} 148-150{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.09(\mathrm{~m}, 5 \mathrm{H})$, $7.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=8.5$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.44(\mathrm{~m}, 1 \mathrm{H})$, $3.43-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=14.3$ and $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.78(\mathrm{~m}$, $2 \mathrm{H}), 2.74-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.24-1.99(\mathrm{~m}, 2 \mathrm{H})$, $1.65-1.20(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.7,139,3,137.6$, 131.7, 129.4, 128.1, 125.9, 125.6, 113.5, 111.5, 82.2, 67.9, 55.2, 43.2, 40.6, 39.3, 30.7, 29.1, 24.9; IR (KBr) $v_{\max } 2920,2834,1605,1498,1453,1236$, 1127, 1095, 1026, 743, $697 \mathrm{~cm}^{-1}$; MS (APCI) m/z $309(\mathrm{M}+\mathrm{H})^{+}$; HRMS (APCI) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{2}, 309.1849(\mathrm{M}+\mathrm{H})^{+}$; found, 309.1858.
$\left(4 R^{*}, 4 \mathrm{a} R^{*}, 10 \mathrm{~b} R^{*}\right)$-4-Benzyl-2,4,4a,5,6,10b-hexahydro-1 H benzo[f]isochromene (8b; Table 5; Entry b). Yield, $117 \mathrm{mg}, 84 \%$; viscous liquid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.17(\mathrm{~m}, 5 \mathrm{H})$, $7.14-7.00(\mathrm{~m}, 4 \mathrm{H}), 4.06-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.60-$ $3.51(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.72$ $(\mathrm{m}, 2 \mathrm{H}), 2.04-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.54(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.0,139.2,136.0,129.1,128.9,128.5$, 128.3, 126.1, 125.9, 125.6, 81.3, 68.8, 39.6, 39.2, 36.9, 31.6, 29.1, 16.9; IR (KBr) $\nu_{\max }$ 2941, 2844, 1088, 749, $700 \mathrm{~cm}^{-1}$; MS (APCI) m/z 279 $(\mathrm{M}+\mathrm{H})^{+}$; HRMS $(A P C I)$ calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}, 279.1743(\mathrm{M}+\mathrm{H})^{+}$; found, 279.1735 .
(4S*,4aS*,10bR*)-4-Benzyl-9-methyl-3-tosyl-1,2,3,4,4a,5, 6,10b-octahydrobenzo[f]isoquinoline (8c; Table 5; Entry c). Yield, 178 mg , 80%; white solid, $\mathrm{mp} 182-184{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.29-7.09(\mathrm{~m}, 7 \mathrm{H}), 7.06-6.95(\mathrm{~m}, 3 \mathrm{H}), 6.94-6.83(\mathrm{~m}, 2 \mathrm{H})$, $4.61-4.48(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.97-$ $2.68(\mathrm{~m}, 5 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.23(\mathrm{~m}, 4 \mathrm{H}), 2.00-1.86(\mathrm{~m}, 1 \mathrm{H})$, $1.85-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.45(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 142.5,138.8,138.3,137.7,135.3,133.3,129.3,129.2,129.1,128.4$, 127.1, 126.8, 126.5, 126.2, 59.0, 43.1, 40.9, 35.6, 32.0, 30.5, 29.7, 27.1, 21.4, 21.2; IR (KBr) $\nu_{\max } 2928,2871,1316,1151,1011,749,703 \mathrm{~cm}^{-1}$; ESI-MS $m / z 446(M+H)^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{~S}$, $446.2153(\mathrm{M}+\mathrm{H})^{+}$; found, 446.2133.
(4S* $4 \mathrm{a} R^{*}, 10 \mathrm{~b} R^{*}$)-4-Benzyl-3-tosyl-1,2,3,4,4a,5,6,10boctahydrobenzo[f]isoquinoline (8d; Table 5; Entry d). Yield, $168 \mathrm{mg}, 78 \%$; white solid, mp $150-152{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.53,7.50\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}\right), 7.29-7.10(\mathrm{~m}, 7 \mathrm{H}), 7.09-6.93(\mathrm{~m}, 4 \mathrm{H})$, $4.28-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.23-2.93(\mathrm{~m}, 3 \mathrm{H}), 2.89-$ $2.63(\mathrm{~m}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.10-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.9,140.1,138.5,138.2,135.9,129.5$, 129.2, 129.1, 128.9, 128.6, 127.0, 126.4, 126.2, 125.7, 60.2, 40.6, 36.3, 34.2, 33.9, 30.5, 29.1, 23.5, 21.4; IR (KBr) $v_{\text {max }} 2926,1312,1150,1092$, 952, $751,694 \mathrm{~cm}^{-1}$; ESI-MS m/z $449\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{~S}, 432.1997(\mathrm{M}+\mathrm{H})^{+}$; found, 432.1996.

■ ASSOCIATED CONTENT

S Supporting Information. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of products $(3 \mathbf{a}-\mathbf{n}, 5 \mathbf{a}-\mathbf{p}, 7 \mathbf{a}-\mathbf{1}$, and $\mathbf{8 a}-\mathbf{d})$, preparation of starting materials, and X-ray data of compounds ($\mathbf{3 a}, \mathbf{5 f}$, and $7 \mathbf{a}$) are provided in the CIF file. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Authors

*Fax: 0091-40-27160512. E-mail:basireddy@iict.res.in; yadavpub@ iict.res.in.

ACKNOWLEDGMENT

This research was performed as part of the Indo-French "Joint Laboratory for Sustainable Chemistry at Interfaces". We thank CSIR and CNRS for support. P.B. thanks CSIR, New Delhi for the award of a fellowship.

■ DEDICATION

Dedicated to Prof. E. J. Corey on the occasion of his 82nd birthday

■ REFERENCES

(1) Prins, H. J. Chem. Weekbl. 1919, 16, 1072.
(2) Prins, H. J. Chem. Weekbl. 1919, 16, 1510.
(3) Adams, D. R.; Bhatnagar, S. R. Synthesis 1977, 661-672.
(4) Arundale, E.; Mikeska, L. A. Chem. Rev. 1952, 51, 505-555.
(5) Reviews on Prins reactions, see: (a) Olier, C.; Kaafarani, M.; Gastaldi, S. S.; Bertrand, M. P. Tetrahedron 2010, 66, 413-445 and references cited therein. (b) Pastor, I. M.; Yus, M. Curr. Org. Chem. 2007, 11, 925-957.
(6) Carballo, R. M.; Ramirez, M. A.; Rodriguez, M. L.; Martin, V. S.; Padron, J. L. Org. Lett. 2006, 8, 3837-3840.
(7) Yadav, J. S.; Reddy, B. V. S.; Chaya, D. N.; Narayan Kumar, G. G. K. S.; Aravind, S.; Kunwar, A. C.; Madavi, C. Tetrahedron Lett. 2008, 49, 3330-3334.
(8) Hanessian, S.; Tremblay, M.; Petersen, J. F. W. J. Am. Chem. Soc. 2004, 126, 6064-6071.
(9) Kishi, Y.; Nagura, H.; Inagi, S.; Fuchigami, T. Chem. Commun. 2008, 3876-3878.
(10) Yang, X.-F.; Mague, J. T.; Li, C.-J. J. Org. Chem. 2001, 66, 739-747.
(11) Epstein, O. L.; Rovis, T. J. Am. Chem. Soc. 2006, 128, 16480-16481.
(12) Albizati, K. F.; Perron, F. J. Org. Chem. 1987, 52, 4128-4130.
(13) Reddy, B. V. S.; Ramesh, K.; Ganesh, A. V.; Kumar, G. G. K. S. N.; Yadav, J. S.; Gree, R. Tetrahedron Lett. 2011, 52, 495-498.
(14) Yang, X.-F.; Wang, M.; Zhang, Y.; Li, C.-J. Synlett 2005, 1912-1916.
(15) Hu, Y.; Skalitzky, D. J.; Rychnovsky, S. D. Tetrahedron Lett. 1996, 37, 8679-8682.
(16) Reddy, U. C.; Bondalapati, S.; Saikia, A. K. J. Org. Chem. 2009, 74, 2605-2608.
(17) Reddy, U. C.; Bondalapati, S.; Saikia, A. K. Eur. J. Org. Chem. 2009, 1625-1630.
(18) Kinoshita, H.; Ingham, J. O.; Ong, W. W.; Beeler, B. A.; Porco, J. A., Jr. J. Am. Chem. Soc. 2010, 132, 6412-6418.
(19) Yadav, J. S.; Reddy, B. V. S.; Ganesh, A. V.; Kumar, G. G. K. S. N. Tetrahedron Lett. 2010, 51, 2963-2966.
(20) Crane, E. A.; Scheidt, K. A. Angew. Chem., Int. Ed. 2010, 49, 8316-8326.
(21) (a) Elsworth, J. D.; Willis, C. L. Chem. Commun. 2008, 1587-1589. (b) Suginome, M.; Ohmori, Y.; Ito, Y. Chem. Commun. 2001, 1090-1091.
(22) Yadav, J. S.; Chakravarthy, P. P.; Borkar, P.; Reddy, B. V. S.; Sarma, A. V. S. Tetrahedron Lett. 2009, 50, 5998-6000.
(23) Yadav, J. S.; Borkar, P.; Chakravarthy, P. P.; Reddy, B. V. S.; Sarma, A. V. S.; Sridhar, B.; Grée, R. J. Org. Chem. 2010, 75, 2081-2084.
(24) Reddy, B. V. S.; Borkar, P.; Chakravarthy, P. P.; Yadav, J. S.; Gree, R. Tetrahedron Lett. 2010, 51, 3412-3416.
(25) Kuo, Y.-J.; Hsiao, P.-C.; Zhang, L.-J.; Wu, M.-D.; Liang, Y.-H.; Ho, H.-O.; Kuo, Y.-H. J. Nat. Prod. 2009, 72, 1097-1101.
(26) Abas, F.; Lajis, N. H.; Shaari, K.; Israf, D. A.; Stanslas, J.; Yusuf, U. K.; Raof, S. M. J. Nat. Prod. 2005, 68, 1090-1093.
(27) Russell, M. G. N.; Baker, R.; Billington, D. C.; Knight, A. K.; Middlemiss, D. N.; Nobe, A. J. J. Med. Chem. 1992, 35, 2025-2033.
(28) Chambers, M. S.; Baker, R.; Billington, D. C.; Knight, A. K.; Middlemiss; Wong, E. H. F. J. Med. Chem. 1992, 35, 2033-2039.
(29) Romero, A. G. EP 0309695, 1992.
(30) Hartmen, G. D.; Phillips, B. T. US 4670443, 1987.
(31) Woodward, R. B.; Heusler, K.; Gosteli, J.; Naegeli, P.; Oppolzer, W.; Ramage, R.; Ranganathan, S.; Vorbruggen, H. J. Am. Chem. Soc. 1966, 88, 852-853.
(32) Casy, G.; Lane, S.; Taylor, R. J. K. J. Chem. Soc., Perkin Trans. 1 1986, 1397-1404.
(33) Block, E. Reactions of Organosulfur Compounds; Academic Press: New York, 1978.
(34) Woodward, R. B.; Logusch, E.; Nambiar, K. P.; Sakan, K.; Ward, D. E.; Au-Yeung, B. W.; Balaram, P.; Browne, L. J.; Card, P. J.; Chen, C. H. J. Am. Chem. Soc. 1981, 103, 3210-3213.
(35) Yadav, J. S.; Thrimurtulu, N.; Gayathri, K. U.; Reddy, B. V. S.; Prasad, A. R. Tetrahedron Lett. 2008, 49, 6617-6620.
(36) Yadav, J. S.; Lakshmi, K. L.; Reddy, N. M.; Prasad, A. R.; Reddy, B. V. S. Tetrahedron 2010, 44, 334-338.
(37) Yadav, J. S.; Padmavani, B.; Reddy, B. V. S.; Venugopal, Ch.; Rao, A. B. Synlett 2007, 13, 2045-2048.
(38) (a) Greeves, N.; Aspinall, H. C.; Bissett, J. S.; Levin, D. Tetrahedron Lett. 2002, 43, 319-321. (b) Greeves, N.; Aspinall, H. C.; Bissett, J. S.; Levin, D. Tetrahedron Lett. 2002, 43, 323-325.
(39) Supplementary crystallographic data (CIF File) and respective ORTEP diagrams (Figures $\mathrm{S} 1-\mathrm{S} 3$) for these compounds have been provided in the Supporting Information. Also, (a) CCDC-806707, (b) CCDC-806708, and (c) CCDC-806709 contain the supplementary crystallographic data for these compounds. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
(40) (a) Rodriquez, L.; Lu, N.; Yang, N.-L. Synlett 1990, 227-228. (b) Schlosser, M.; Jenny, T.; Guggisberg, Y. Synlett 1990, 704.
(41) (a)Procopio, A.; Dalpozzo, R.; De Nino, A.; Nardi, M.; Sindona, G.; Tagarelli, A. Synlett 2004, 2633-2635.

[^0]: Received: January 28, 2011
 Published: August 15, 2011

